
Francesco Argenton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2779630/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transgenesis, mutagenesis, knockdown, and genetic colony management. , 2022, , 139-155.		Ο
2	Zebrafish Mutant Lines Reveal the Interplay between nr3c1 and nr3c2 in the GC-Dependent Regulation of Gene Transcription. International Journal of Molecular Sciences, 2022, 23, 2678.	4.1	8
3	Notch controls the cell cycle to define leader versus follower identities during collective cell migration. ELife, 2022, 11, .	6.0	14
4	Efficient clofilium tosylate-mediated rescue of POLG-related disease phenotypes in zebrafish. Cell Death and Disease, 2021, 12, 100.	6.3	13
5	HIF1α-dependent induction of the mitochondrial chaperone TRAP1 regulates bioenergetic adaptations to hypoxia. Cell Death and Disease, 2021, 12, 434.	6.3	17
6	Efficient Neuroprotective Rescue of Sacsin-Related Disease Phenotypes in Zebrafish. International Journal of Molecular Sciences, 2021, 22, 8401.	4.1	7
7	The Roles of Post-Translational Modifications in STAT3 Biological Activities and Functions. Biomedicines, 2021, 9, 956.	3.2	35
8	Y705 and S727 are required for the mitochondrial import and transcriptional activities of STAT3, and for regulation of stem cell proliferation. Development (Cambridge), 2021, 148, .	2.5	38
9	Anti-Proliferative and Pro-Apoptotic Effects of Short-Term Inhibition of Telomerase In Vivo and in Human Malignant B Cells Xenografted in Zebrafish. Cancers, 2020, 12, 2052.	3.7	8
10	Calsequestrins New Calcium Store Markers of Adult Zebrafish Cerebellum and Optic Tectum. Frontiers in Neuroanatomy, 2020, 14, 15.	1.7	3
11	The stem-like STAT3-responsive cells of zebrafish intestine are WNT/β-catenin dependent. Development (Cambridge), 2020, 147, .	2.5	21
12	miR-7 Controls the Dopaminergic/Oligodendroglial Fate through Wnt/β-catenin Signaling Regulation. Cells, 2020, 9, 711.	4.1	18
13	Temporal control of Wnt signaling is required for habenular neuron diversity and brain asymmetry. Development (Cambridge), 2020, 147, .	2.5	14
14	Developmental and Tumor Angiogenesis Requires the Mitochondria-Shaping Protein Opa1. Cell Metabolism, 2020, 31, 987-1003.e8.	16.2	101
15	Clucocorticoid receptor activities in the zebrafish model: a review. Journal of Endocrinology, 2020, 247, R63-R82.	2.6	15
16	Impaired Mitochondrial ATP Production Downregulates Wnt Signaling via ER Stress Induction. Cell Reports, 2019, 28, 1949-1960.e6.	6.4	56
17	Feeding Entrainment of the Zebrafish Circadian Clock Is Regulated by the Glucocorticoid Receptor. Cells, 2019, 8, 1342.	4.1	21
18	The zebrafish orthologue of the human hepatocerebral disease gene <i>MPV17</i> plays pleiotropic roles in mitochondria. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	21

#	Article	IF	CITATIONS
19	Loss of cardiac Wnt/β-catenin signalling in desmoplakin-deficient AC8 zebrafish models is rescuable by genetic and pharmacological intervention. Cardiovascular Research, 2018, 114, 1082-1097.	3.8	39
20	Mutant MYO1F alters the mitochondrial network and induces tumor proliferation in thyroid cancer. International Journal of Cancer, 2018, 143, 1706-1719.	5.1	35
21	The idebenone metabolite QS10 restores electron transfer in complex I and coenzyme Q defects. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 901-908.	1.0	31
22	10th European Zebrafish Meeting 2017, Budapest: Husbandry Workshop Summary. Zebrafish, 2018, 15, 213-215.	1.1	3
23	A mitochondrial therapy for Duchenne muscular dystrophy. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, e112.	1.0	0
24	Zebrafish mutants and TEAD reporters reveal essential functions for Yap and Taz in posterior cardinal vein development. Scientific Reports, 2018, 8, 10189.	3.3	42
25	Ca ²⁺ binding to Fâ€ATP synthase β subunit triggers the mitochondrial permeability transition. EMBO Reports, 2017, 18, 1065-1076.	4.5	170
26	Glucocorticoids promote Von Hippel Lindau degradation and Hif-11± stabilization. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9948-9953.	7.1	49
27	Alisporivir rescues defective mitochondrial respiration in Duchenne muscular dystrophy. Pharmacological Research, 2017, 125, 122-131.	7.1	51
28	Tcf7l2 plays pleiotropic roles in the control of glucose homeostasis, pancreas morphology, vascularization and regeneration. Scientific Reports, 2017, 7, 9605.	3.3	16
29	Zebrafish as a model for von Hippel Lindau and hypoxia-inducible factor signaling. Methods in Cell Biology, 2017, 138, 497-523.	1.1	6
30	Treponema pallidum (syphilis) antigen TpF1 induces angiogenesis through the activation of the IL-8 pathway. Scientific Reports, 2016, 6, 18785.	3.3	27
31	Monitoring Wnt Signaling in Zebrafish Using Fluorescent Biosensors. Methods in Molecular Biology, 2016, 1481, 81-94.	0.9	19
32	Knock-down of pantothenate kinase 2 severely affects the development of the nervous and vascular system in zebrafish, providing new insights into PKAN disease. Neurobiology of Disease, 2016, 85, 35-48.	4.4	55
33	Calsequestrins in skeletal and cardiac muscle from adult Danio rerio. Journal of Muscle Research and Cell Motility, 2016, 37, 27-39.	2.0	8
34	Zebrafish Tg(hb9:MTS-Kaede): a new in vivo tool for studying the axonal movement of mitochondria. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1247-1255.	2.4	24
35	Discovery, Synthesis, and Optimization of Diarylisoxazoleâ€3â€carboxamides as Potent Inhibitors of the Mitochondrial Permeability Transition Pore. ChemMedChem, 2015, 10, 1655-1671.	3.2	41
36	Glucocerebrosidase deficiency in zebrafish affects primary bone ossification through increased oxidative stress and reduced Wnt/β-catenin signaling. Human Molecular Genetics, 2015, 24, 1280-1294.	2.9	46

#	Article	IF	CITATIONS
37	A GFP-Tagged Gross Deletion on Chromosome 1 Causes Malignant Peripheral Nerve Sheath Tumors and Carcinomas in Zebrafish. PLoS ONE, 2015, 10, e0145178.	2.5	7
38	Zebrafish reporter lines reveal in vivo signaling pathway activities involved in pancreatic cancer. DMM Disease Models and Mechanisms, 2014, 7, 883-94.	2.4	37
39	A Smad3 transgenic reporter reveals TGF-beta control of zebrafish spinal cord development. Developmental Biology, 2014, 396, 81-93.	2.0	52
40	Intracardiac flow dynamics regulate atrioventricular valve morphogenesis. Cardiovascular Research, 2014, 104, 49-60.	3.8	67
41	NIM811, a cyclophilin inhibitor without immunosuppressive activity, is beneficial in collagen VI congenital muscular dystrophy models. Human Molecular Genetics, 2014, 23, 5353-5363.	2.9	64
42	Simplet/Fam53b is required for Wnt signal transduction by regulating β-catenin nuclear localization. Development (Cambridge), 2014, 141, 3529-3539.	2.5	35
43	A living biosensor model to dynamically trace glucocorticoid transcriptional activity during development and adult life in zebrafish. Molecular and Cellular Endocrinology, 2014, 392, 60-72.	3.2	34
44	Wnt/β-Catenin Signaling Defines Organizing Centers that Orchestrate Growth and Differentiation of the Regenerating Zebrafish Caudal Fin. Cell Reports, 2014, 6, 467-481.	6.4	163
45	Simplet/Fam53b is required for Wnt signal transduction by regulating β-catenin nuclear localization. Journal of Cell Science, 2014, 127, e1-e1.	2.0	Ο
46	Development and specification of cerebellar stem and progenitor cells in zebrafish: from embryo to adult. Neural Development, 2013, 8, 9.	2.4	82
47	Wnt activation promotes neuronal differentiation of Glioblastoma. Cell Death and Disease, 2013, 4, e500-e500.	6.3	89
48	Generation and application of signaling pathway reporter lines in zebrafish. Molecular Genetics and Genomics, 2013, 288, 231-242.	2.1	66
49	RAB8B Is Required for Activity and Caveolar Endocytosis of LRP6. Cell Reports, 2013, 4, 1224-1234.	6.4	65
50	Emilin3 is required for notochord sheath integrity and interacts with Scube2 to regulate notochord-derived Hedgehog signals. Development (Cambridge), 2013, 140, 4594-4601.	2.5	38
51	Disruptions of Global and Jagged1-Mediated Notch Signaling Affect Thyroid Morphogenesis in the Zebrafish. Endocrinology, 2012, 153, 5645-5658.	2.8	50
52	Diverse Chemical Scaffolds Support Direct Inhibition of the Membrane-bound O-Acyltransferase Porcupine. Journal of Biological Chemistry, 2012, 287, 23246-23254.	3.4	72
53	Biasing Amacrine Subtypes in the Atoh7 Lineage through Expression of Barhl2. Journal of Neuroscience, 2012, 32, 13929-13944.	3.6	40
54	Wnt Signaling Regulates Postembryonic Hypothalamic Progenitor Differentiation. Developmental Cell, 2012, 23, 624-636.	7.0	90

#	Article	IF	CITATIONS
55	Mitochondrial DNA metabolism in early development of zebrafish (Danio rerio). Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1002-1011.	1.0	78
56	In vivo Wnt signaling tracing through a transgenic biosensor fish reveals novel activity domains. Developmental Biology, 2012, 366, 327-340.	2.0	227
57	Zebrafish Ortholog of Human DOT1L Regulates Primitive and Transient Definitive Hematopoiesis and Controls hoxa9 and meis1 Expression. Blood, 2012, 120, 849-849.	1.4	1
58	Lef1-dependent Wnt/β-catenin signalling drives the proliferative engine that maintains tissue homeostasis during lateral line development. Development (Cambridge), 2011, 138, 3931-3941.	2.5	65
59	Developmental defects and neuromuscular alterations due to mitofusin 2 gene (MFN2) silencing in zebrafish: a new model for Charcot-Marie-Tooth type 2A neuropathy. Neuromuscular Disorders, 2011, 21, 58-67.	0.6	33
60	<i>mll</i> ortholog containing functional domains of human <i>MLL</i> is expressed throughout the zebrafish lifespan and in haematopoietic tissues. British Journal of Haematology, 2011, 152, 307-321.	2.5	5
61	Isolation and Genetic Characterization of Mother-of-Snow-White, a Maternal Effect Allele Affecting Laterality and Lateralized Behaviors in Zebrafish. PLoS ONE, 2011, 6, e25972.	2.5	9
62	Mitochondrial Ca2+ transport and permeability transition in zebrafish (Danio rerio). Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1775-1779.	1.0	30
63	Long-range gene regulation links genomic type 2 diabetes and obesity risk regions to <i>HHEX</i> , <i>SOX4</i> , and <i>IRX3</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 775-780.	7.1	189
64	A novel functional role of iduronate-2-sulfatase in zebrafish early development. Matrix Biology, 2010, 29, 43-50.	3.6	37
65	Early differences in epithalamic left–right asymmetry influence lateralization and personality of adult zebrafish. Behavioural Brain Research, 2010, 206, 208-215.	2.2	92
66	prep1.2 and aldh1a2 participate to a positive loop required for branchial arches development in zebrafish. Developmental Biology, 2010, 343, 94-103.	2.0	12
67	af9 Regulates gata2 Expression During Early Hemangioblast Specification and Vascular Pattern Formation In Zebrafish Blood, 2010, 116, 2600-2600.	1.4	1
68	Differential expression and regulation of <i>olig</i> genes in zebrafish. Journal of Comparative Neurology, 2009, 515, 378-396.	1.6	13
69	FAM/USP9x, a Deubiquitinating Enzyme Essential for TGFÎ ² Signaling, Controls Smad4 Monoubiquitination. Cell, 2009, 136, 123-135.	28.9	442
70	Lines of Danio rerio selected for opposite behavioural lateralization show differences in anatomical left–right asymmetries. Behavioural Brain Research, 2009, 197, 157-165.	2.2	31
71	Analysis of beta cell proliferation dynamics in zebrafish. Developmental Biology, 2009, 332, 299-308.	2.0	24
72	Zebrafish pancreas development. Molecular and Cellular Endocrinology, 2009, 312, 24-30.	3.2	79

#	Article	IF	CITATIONS
73	The Human AF9 Homologue in Zebrafish Is Involved in Primitive Hematopoietic Development Blood, 2009, 114, 3653-3653.	1.4	0
74	Emilin genes are duplicated and dynamically expressed during zebrafish embryonic development. Developmental Dynamics, 2008, 237, 222-232.	1.8	15
75	Distinct delta and jagged genes control sequential segregation of pancreatic cell types from precursor pools in zebrafish. Developmental Biology, 2007, 301, 192-204.	2.0	95
76	Function and regulation of zebrafish nkx2.2a during development of pancreatic islet and ducts. Developmental Biology, 2007, 304, 875-890.	2.0	81
77	Molecular cloning and biochemical characterization of sialidases from zebrafish (<i>Danio) Tj ETQq1 1 0.784314</i>	rgBT /Ove	rlock 10 Tf 5
78	Zebrafish spata2 is expressed at early developmental stages. International Journal of Developmental Biology, 2007, 51, 241-246.	0.6	7
79	High-affinity peptide transporter PEPT2 (SLC15A2) of the zebrafish Danio rerio: functional properties, genomic organization, and expression analysis. Physiological Genomics, 2006, 24, 207-217.	2.3	48
80	Developmental Expression of NPY/PYY Receptors zYb and zYc in Zebrafish. Annals of the New York Academy of Sciences, 2005, 1040, 399-401.	3.8	8
81	Expression analysis ofjagged genes in zebrafish embryos. Developmental Dynamics, 2005, 233, 638-645.	1.8	39
82	The basic helix-loop-helix olig3 establishes the neural plate boundary of the trunk and is necessary for development of the dorsal spinal cord. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4377-4382.	7.1	36
83	sox4b is a key player of pancreatic α cell differentiation in zebrafish. Developmental Biology, 2005, 285, 211-223.	2.0	73
84	Prep1.1 has essential genetic functions in hindbrain development and cranial neural crest cell differentiation. Development (Cambridge), 2004, 131, 613-627.	2.5	62
85	Ectopic expression and knockdown of a zebrafish sox21 reveal its role as a transcriptional repressor in early development. Mechanisms of Development, 2004, 121, 131-142.	1.7	38
86	Evolutionary conserved role of ptf1a in the specification of exocrine pancreatic fates. Developmental Biology, 2004, 268, 174-184.	2.0	101
87	Molecular and functional characterisation of the zebrafish (Danio rerio) PEPT1-type peptide transporter1. FEBS Letters, 2003, 549, 115-122.	2.8	147
88	The binding of the RyR2 calcium channel to its gating protein FKBP12.6 is oppositely affected by ARVD2 and VTSIP mutations. Biochemical and Biophysical Research Communications, 2002, 299, 594-598.	2.1	51
89	Differential expression of two somatostatin genes during zebrafish embryonic development. Mechanisms of Development, 2002, 115, 133-137.	1.7	63
90	BMP signalling regulates anteroposterior endoderm patterning in zebrafish. Mechanisms of Development, 2002, 118, 29-37.	1.7	146

#	Article	IF	CITATIONS
91	Trout GH promoter analysis reveals a modular pattern of regulation consistent with the diversification of GH gene control and function in vertebrates. Molecular and Cellular Endocrinology, 2002, 189, 11-23.	3.2	11
92	Cloning of Zebrafish Neurofilament cDNAs for Plasticin and Gefiltin: Increased mRNA Expression in Ganglion Cells After Optic Nerve Injury. Journal of Neurochemistry, 2002, 71, 20-32.	3.9	38
93	Pancreas Development in Zebrafish: Early Dispersed Appearance of Endocrine Hormone Expressing Cells and Their Convergence to Form the Definitive Islet. Developmental Biology, 2001, 230, 189-203.	2.0	201
94	Cloning and expression pattern of a zebrafish homolog of forkhead activin signal transducer (FAST), a transcription factor mediating Nodal-related signals. Mechanisms of Development, 2000, 99, 187-190.	1.7	8
95	Structure and Functional Analysis of a Tilapia (Oreochromis mossambicus) Growth Hormone Gene: Activation and Repression by Pituitary Transcription Factor Pit-1. DNA and Cell Biology, 1999, 18, 489-502.	1.9	17
96	Regulatory Regions in the Promoter and Third Intron of the Growth Hormone Gene in Rainbow Trout, Oncorhynchus mykiss Walbaum. General and Comparative Endocrinology, 1999, 116, 261-271.	1.8	23
97	Early appearance of pancreatic hormone-expressing cells in the zebrafish embryo. Mechanisms of Development, 1999, 87, 217-221.	1.7	136
98	Expression patterns of zebrafish sox11A, sox11B and sox21. Mechanisms of Development, 1999, 89, 167-171.	1.7	52
99	The Bacteriophage T7 Binary System Activates Transient Transgene Expression in Zebrafish (Danio) Tj ETQq1 1 0.	784314 rg 2.1	gBT /Overlock
100	Functional characterization of the trout insulin promoter: implications for fish as a favorable model of pancreas development. FEBS Letters, 1997, 407, 191-196.	2.8	11
101	Mechanisms of Transcriptional Activation of the Promoter of the Rainbow Trout Prolactin Gene by GHF1/Pit1 and Glucocorticoid. Biochemical and Biophysical Research Communications, 1996, 224, 57-66.	2.1	28
102	An Activation Domain of the Helix-Loop-Helix Transcription Factor E2A Shows Cell Type Preference In Vivo in Microinjected Zebra Fish Embryos. Molecular and Cellular Biology, 1996, 16, 1714-1721.	2.3	28
103	A TGACG Motif Mediates Growth-Hormone-Factor-1/Pituitary-Transcriptional-Activator-1-Dependent cAMP Regulation of the Rainbow Trout Growth-Hormone Promoter. FEBS Journal, 1996, 238, 591-598.	0.2	30
104	Use of random DNA amplification to generate specific molecular probes for hybridization tests and PCR-based diagnosis of Yersinia ruckeri. Diseases of Aquatic Organisms, 1996, 24, 121-127.	1.0	28
105	The Transcriptional Regulation of the Growth Hormone Gene Is Conserved in Vertebrate Evolution. Biochemical and Biophysical Research Communications, 1993, 192, 1360-1366.	2.1	33
106	Centrosome competition: A possibility?. Experimental Cell Research, 1990, 187, 1-3.	2.6	6