Jonathan C Knight

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2779191/publications.pdf

Version: 2024-02-01

200 papers 28,393 citations

65 h-index 150 g-index

203 all docs 203 docs citations

203 times ranked 8680 citing authors

#	Article	IF	CITATIONS
1	Sub parts-per-billion detection of ethane in a 30-meters long mid-IR Antiresonant Hollow-Core Fiber. Optics and Laser Technology, 2022, 147, 107638.	4.6	16
2	Photodarkening mechanisms of Pr ³⁺ singly doped and Pr ³⁺ /Ce ³⁺ coâ€doped silicate glasses and fibers. Journal of the American Ceramic Society, 2022, 105, 3291-3302.	3.8	3
3	Temperature-Dependent Group Delay of Photonic-Bandgap Hollow-Core Fiber Tuned by Surface-Mode Coupling. Optics Express, 2022, 30, 222.	3.4	3
4	Molecular detection of Gram-positive bacteria in the human lung through an optical fiber–based endoscope. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 800-807.	6.4	14
5	Delivery of CW laser power up to 300 watts at 1080 nm by an uncooled low-loss anti-resonant hollow-core fiber. Optics Express, 2021, 29, 1492.	3.4	33
6	Fabrication of Microchannels in a Nodeless Antiresonant Hollow-Core Fiber Using Femtosecond Laser Pulses. Sensors, 2021, 21, 7591.	3.8	7
7	Visible emission and energy transfer in Tb ³⁺ /Dy ³⁺ coâ€doped phosphate glasses. Journal of the American Ceramic Society, 2020, 103, 6847-6859.	3.8	19
8	Antiresonant Hollow-Core Fiber-Based Dual Gas Sensor for Detection of Methane and Carbon Dioxide in the Near- and Mid-Infrared Regions. Sensors, 2020, 20, 3813.	3.8	60
9	Attenuation limit of silica-based hollow-core fiber at mid-IR wavelengths. APL Photonics, 2019, 4, .	5.7	54
10	Negative-Curvature Anti-Resonant Fiber Coupling Tolerances. Journal of Lightwave Technology, 2019, 37, 5548-5554.	4.6	7
11	Developing Novel Fibres for Endoscopic Imaging and Sensing. , 2019, , .		O
12	Ultraâ€low background Raman sensing using a negativeâ€curvature fibre and no distal optics. Journal of Biophotonics, 2019, 12, e201800239.	2.3	15
13	Anti-Resonant Hollow Core Fibers. , 2019, , .		2
14	Continuous-Wave Mid-Infrared Gas Fiber Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-8.	2.9	16
15	In vivo multiphoton microscopy using a handheld scanner with lateral and axial motion compensation. Journal of Biophotonics, 2018, 11, e201700131.	2.3	11
16	Single-mode solarization-free hollow-core fiber for ultraviolet pulse delivery. Optics Express, 2018, 26, 10879.	3.4	59
17	Semi-random multicore fibre design for adaptive multiphoton endoscopy. Optics Express, 2018, 26, 3661.	3.4	6
18	Photonic crystal fibers: where from, where to?., 2018, , .		0

#	Article	IF	Citations
19	45W 2 Âμm Nanosecond Pulse Delivery Using Antiresonant Hollow-Core Fiber. , 2018, , .		4
20	High-resolution air-clad imaging fibers. Optics Letters, 2018, 43, 5311.	3.3	14
21	World-Beating Performance from Hollow Core Fibers. , 2018, , .		0
22	2-micron Pulse compression using gas-filled negative curvature hollow-core fiber., 2017,,.		0
23	Quantitative characterization of endoscopic imaging fibers. Optics Express, 2017, 25, 1985.	3.4	9
24	Measurement of resonant bend loss in anti-resonant hollow core optical fiber. Optics Express, 2017, 25, 20612.	3.4	40
25	Mid-infrared 1  W hollow-core fiber gas laser source. Optics Letters, 2017, 42, 4055.	3.3	58
26	Experimental measurement of supercontinuum coherence in highly nonlinear soft-glass photonic crystal fibers. Optics Express, 2017, 25, 18842.	3.4	7
27	Gas filled hollow core mid-IR fibre lasers. , 2017, , .		0
28	Low loss anti-resonant hollow-core fibers and applications. , 2017, , .		4
29	Continuous-Wave 3.1 \hat{l} 4m Gas Fiber Laser with 0.47 W Output Power. , 2017, , .		5
30	Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection. Optics Express, 2016, 24, 21474.	3.4	28
31	Low-Loss Anti-Resonant Hollow-Core Fibers with Single-Mode Performance. , 2016, , .		1
32	Cavity-based mid-IR fiber gas laser pumped by a diode laser. Optica, 2016, 3, 218.	9.3	116
33	Tunable fibreâ€coupled multiphoton microscopy with a negative curvature fibre. Journal of Biophotonics, 2016, 9, 715-720.	2.3	19
34	Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers. Optics Express, 2016, 24, 12969.	3.4	44
35	Fugitive methane leak detection using mid-infrared hollow-core photonic crystal fiber containing ultrafast laser drilled side-holes. , 2016, , .		2
36	Adaptive Multiphoton Endomicroscope Incorporating a Polarization-Maintaining Multicore Optical Fibre. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 171-178.	2.9	18

#	Article	IF	CITATIONS
37	Negative Curvature Hollow-Core Optical Fiber. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 146-155.	2.9	200
38	Line-tunable CW Lasing of Mid-infrared Acetylene Gas Hollow Core Fiber Laser. , 2016, , .		1
39	Useful Light from Photonic Crystal Fibres. , 2016, , .		1
40	Pulsed and CW Mid-infrared Acetylene Gas Hollow-Core Fiber Laser. , 2016, , .		2
41	High Peak-Power, Narrow Linewidth, 1.5 μm Fiber Gas Source Generation by Stimulated Raman Scattering of Ethane. , 2016, , .		0
42	Hollow core fibers for optically pumped mid-IR fiber lasers. , 2015, , .		0
43	Silica hollow core microstructured fibers for beam delivery in industrial and medical applications. Frontiers in Physics, 2015, 3, .	2.1	20
44	Fibre-coupled multiphoton microscope with adaptive motion compensation. Biomedical Optics Express, 2015, 6, 1876.	2.9	10
45	High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micro-machining. Optics Express, 2015, 23, 8498.	3.4	55
46	Synchronously Pumped Mid-IR Hollow Core Fiber Gas Laser. , 2015, , .		1
47	Hollow-core Fiber Gas Lasers. , 2015, , .		1
48	High peak power nanosecond and picosecond pulse delivery through a hollow-core Negative Curvature Fiber in the green spectral region for micro-machining. , 2014, , .		2
49	Out of the Blue and into the Black - Silica Fibers for the Mid-IR. , 2014, , .		1
50	Negative curvature fibers with reduced leakage loss., 2014,,.		9
51	Highly birefringent multicore optical fibers. , 2014, , .		O
52	Hollow antiresonant fibers with low bending loss. Optics Express, 2014, 22, 10091.	3.4	138
53	Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber. Optics Express, 2014, 22, 21872.	3.4	67
54	Efficient 1.9 <i>μ</i> m emission in H ₂ -filled hollow core fiber by pure stimulated vibrational Raman scattering. Laser Physics Letters, 2014, 11, 105807.	1.4	59

#	Article	IF	CITATIONS
55	High-power femtosecond fiber lasers based on self-similar pulse evolution. Proceedings of SPIE, 2014, ,	0.8	O
56	Hollow antiresonant fibers with reduced attenuation. Optics Letters, 2014, 39, 1853.	3.3	173
57	1.9 î $^1\!\!\!/\!\!4$ m Coherent Source Generation in Hydrogen-Filled Hollow Core Fiber by Stimulated Raman Scattering. , 2014, , .		0
58	1064Ânm laser-induced defects in pure SiO_2 fibers. Optics Letters, 2013, 38, 2717.	3.3	4
59	Silica hollow core microstructured fibres for mid-infrared surgical applications. Journal of Non-Crystalline Solids, 2013, 377, 236-239.	3.1	20
60	Temperature response of an all-solid photonic bandgap fiber for sensing applications. Applied Optics, 2013, 52, 1461.	1.8	6
61	Flexible delivery of Er:YAG radiation at 2.94 \hat{l} 4m with novel hollow-core silica glass fibres: demonstration of tissue ablation. , 2013, , .		0
62	Limits of Hollow Core Negative Curvature Fiber. , 2013, , .		0
63	Spectral attenuation limits of silica hollow core negative curvature fiber. Optics Express, 2013, 21, 21466.	3.4	119
64	Picosecond and nanosecond pulse delivery through a hollow-core Negative Curvature Fiber for micro-machining applications. Optics Express, 2013, 21, 22742.	3.4	96
65	Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers. Optics Express, 2013, 21, 21912.	3.4	86
66	A hollow-core Negative Curvature Fibre for efficient delivery of NIR picosecond and femtosecond pulses for precision micro-machining. , 2013, , .		1
67	State-of-the-Art Photonic Crystal Fiber. Optics and Photonics News, 2012, 23, 24.	0.5	5
68	Low loss silica hollow core fibers for 3–4 μm spectral region. Optics Express, 2012, 20, 11153.	3.4	357
69	From zero dispersion to group index matching: How tapering fibers offers the best of both worlds for visible supercontinuum generation. Optical Fiber Technology, 2012, 18, 315-321.	2.7	11
70	Solving Light Delivery Problems Using Hollow Core Fibers: Where Angels Fear to Tread. , 2012, , .		0
71	In-Line Gas Sensor Based on a Photonic Bandgap Fiber With Laser-Drilled Lateral Microchannels. IEEE Sensors Journal, 2011, 11, 2926-2931.	4.7	28
72	2.04 & $\#$ x03BC;m light generation from a Ti:Sapphire laser using a Photonic Crystal Fiber with low OH loss., 2011,,.		0

#	Article	IF	Citations
73	Double-clad hollow core photonic crystal fiber for coherent Raman endoscope. Optics Express, 2011, 19, 12562.	3.4	57
74	Highly-efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low OH loss. Optics Express, 2011, 19, 17766.	3.4	46
75	Spatiotemporal nonlinear optics in arrays of subwavelength waveguides. Physical Review A, 2010, 82, .	2.5	25
76	What do you see in photonic crystal fibers?. Frontiers of Optoelectronics in China, 2010, 3, 2-8.	0.2	1
77	Optical fiber-based devices and applications. Frontiers of Optoelectronics in China, 2010, 3, 1-1.	0.2	0
78	Compressing slow solitons. Nature Photonics, 2010, 4, 806-807.	31.4	6
79	Ultrashort Pulse Delivery in Hollow-Core Photonic Bandgap Fiber at 540 nm. , 2010, , .		2
80	Spectral characterization of a photonic bandgap fiber for sensing applications. Applied Optics, 2010, 49, 1870.	2.1	2
81	Higher order guided mode propagation in solid-core photonic bandgap fibers. Optics Express, 2010, 18, 8906.	3.4	13
82	High power red and near-IR generation using four wave mixing in all integrated fibre laser systems. Optics Express, 2010, 18, 16193.	3.4	49
83	Supermode dispersion and waveguide-to-slot mode transition in arrays of silicon-on-insulator waveguides. Optics Letters, 2010, 35, 3925.	3.3	15
84	Photonic BandGap Fiber With Multiple Hollow Cores. Journal of Lightwave Technology, 2010, 28, 1287-1290.	4.6	5
85	Coupling efficiency and transmission through hollow-core photonic bandgap fibers. Proceedings of SPIE, $2010, $, .	0.8	0
86	Efficient four wave mixing from a picosecond fibre laser in photonic crystal fibre. , 2009, , .		2
87	Ultrasensitive UV-tunable grating in all-solid photonic bandgap fibers. Optics Communications, 2009, 282, 2358-2361.	2.1	15
88	Characterization of a photonic crystal fiber mode converter using low coherence interferometry. Optics Letters, 2009, 34, 1123.	3.3	23
89	Broadband tunable optical parametric amplification from a single 50 MHz ultrafast fiber laser. Optics Express, 2009, 17, 7304.	3.4	24
90	Accurate measurement of the dispersion of hollow-core fibers using a scalable technique. Optics Express, 2009, 17, 9006.	3 . 4	7

#	Article	IF	Citations
91	A phase-stabilized carbon nanotube fiber laser frequency comb. Optics Express, 2009, 17, 14115.	3.4	42
92	Solitons in Hollow Core Photonic Crystal Fiber: Engineering Nonlinearity and Compressing Pulses. Journal of Lightwave Technology, 2009, 27, 1644-1652.	4.6	22
93	Ultrafast optical parametric oscillators for spectroscopy. , 2009, , .		0
94	Tunable high-energy femtosecond soliton fiber laser based on hollow-core photonic bandgap fiber. , 2009, , .		2
95	Phase-stabilized 167 MHz Repetition Frequency Carbon Nanotube Fiber Laser Frequency Comb., 2009,,.		0
96	Mid-infrared gas sensing using a photonic bandgap fiber. Applied Optics, 2008, 47, 1269.	2.1	78
97	Visibly "white―light generation in uniform photonic crystal fiber using a microchip laser. Optics Express, 2008, 16, 2670.	3.4	201
98	Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. Optics Express, 2008, 16, 7161.	3.4	424
99	Experimental reconstruction of bands in solid core photonic bandgap fibres using acoustic gratings. Optics Express, 2008, 16, 13845.	3.4	10
100	Trends in stimulated Brillouin scattering and optical phase conjugation. Laser and Particle Beams, 2008, 26, 297-362.	1.0	39
101	Hollow-core photonic bandgap fibers with improved performance. , 2008, , .		1
102	Applications of Long Period Gratings in Solid Core Photonic Bandgap Fibers. AIP Conference Proceedings, 2008, , .	0.4	1
103	Tailoring the Nonlinear Response of Hollow-core Photonic Bandgap Fibres. AIP Conference Proceedings, 2008, , .	0.4	1
104	<title>Slow light in optical fiber using stimulated Brillouin scattering</title> ., 2008, , .		1
105	Control of surface modes in hollow-core bandgap fibers. , 2008, , .		0
106	Waveguide induced spectral bandwidth enhancement of slow light group index caused by stimulated Brillouin scattering in optical fiber. , 2008, , .		1
107	935â€nm Nd3+ fibre laser incorporating tapered photonic bandgap fibre filter. Electronics Letters, 2007, 43, 327.	1.0	8
108	Photonic-crystal fibers for dispersion compensation in short-pulse fiber laser sources: design algorithms and dispersion characterization. , 2007, , .		0

#	Article	IF	Citations
109	Initial dynamics of supercontinuum generation in highly nonlinear photonic crystal fiber. Optics Letters, 2007, 32, 952.	3.3	19
110	High nonlinearity glass photonic crystal nanowires. Optics Express, 2007, 15, 829.	3.4	28
111	Field enhancement within an optical fibre with a subwavelength air core. Nature Photonics, 2007, 1, 115-118.	31.4	162
112	Hollow-core photonic crystal fibres for delivery and compression of ultrashort optical pulses. Optical and Quantum Electronics, 2007, 39, 1047-1056.	3.3	7
113	Silica-clad neodymium-doped lanthanum phosphate fibers and fiber lasers. IEEE Photonics Technology Letters, 2006, 18, 574-576.	2.5	37
114	Phase-sensitive scattering of a continuous wave on a soliton. Optics Letters, 2006, 31, 1624.	3.3	26
115	Third-harmonic generation by Raman-shifted solitons in a photonic-crystal fiber. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 1975.	2.1	28
116	Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre. Optics Express, 2006, 14, 1596.	3.4	217
117	Spectrally smooth supercontinuum from 350 nm to 3 \hat{l} /4m in sub-centimeter lengths of soft-glass photonic crystal fibers. Optics Express, 2006, 14, 4928.	3.4	101
118	Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation. Optics Express, 2006, 14, 5715.	3.4	230
119	Photonic sensing based on variation of propagation properties of photonic crystal fibres. Optics Express, 2006, 14, 12445.	3.4	9
120	Measuring beam quality of hollow core photonic crystal fibers. Journal of Lightwave Technology, 2006, 24, 3761-3769.	4.6	10
121	Solid Photonic Bandgap Fibres and Applications. Japanese Journal of Applied Physics, 2006, 45, 6059-6063.	1.5	32
122	Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nature Physics, 2006, 2, 388-392.	16.7	263
123	Optical Frequency Measurement Using Chirped-Mirror-Dispersion-Controlled Mode-Locked Ti:Al2O3Laser. Japanese Journal of Applied Physics, 2006, 45, 5051-5062.	1.5	6
124	Photonic sensing based on modulation of propagation properties of Photonic Crystal Fibers., 2005,,.		2
125	Competition between spectral splitting and Raman frequency shift in negative-dispersion slope photonic crystal fiber. Optics Communications, 2005, 248, 281-285.	2.1	23
126	Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature, 2005, 434, 488-491.	27.8	479

#	Article	IF	CITATIONS
127	Interaction of an Optical Soliton with a Dispersive Wave. Physical Review Letters, 2005, 95, 213902.	7.8	128
128	Stokes Amplification Regimes in Quasi-cw Pumped Hydrogen-Filled Hollow-Core Photonic Crystal Fiber. Physical Review Letters, 2005, 95, 213903.	7.8	56
129	Improved hollow-core photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications. Applied Optics, 2005, 44, 4582.	2.1	41
130	Finite-element analysis and experimental results for a microstructured fiber with enhanced hydrostatic pressure sensitivity. Journal of Lightwave Technology, 2005, 23, 1227-1231.	4.6	26
131	Ultimate low loss of hollow-core photonic crystal fibres. Optics Express, 2005, 13, 236.	3.4	748
132	Single-mode mid-IR guidance in a hollow-core photonic crystal fiber. Optics Express, 2005, 13, 7139.	3.4	104
133	Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround. Optics Express, 2005, 13, 8277.	3.4	88
134	Visualizing nonlinear dynamics in optical waveguides. , 2005, 5714, 160.		1
135	Dispersion and refractive index measurement for Ge, B-Ge doped and photonic crystal fibre following irradiation at MGy levels. Measurement Science and Technology, 2004, 15, 1659-1664.	2.6	7
136	Ultrahigh Efficiency Laser Wavelength Conversion in a Gas-Filled Hollow Core Photonic Crystal Fiber by Pure Stimulated Rotational Raman Scattering in Molecular Hydrogen. Physical Review Letters, 2004, 93, 123903.	7.8	172
137	Modeling the propagation of light in photonic crystal fibers. Physica D: Nonlinear Phenomena, 2004, 189, 100-106.	2.8	22
138	Very High Numerical Aperture Fibers. IEEE Photonics Technology Letters, 2004, 16, 843-845.	2.5	106
139	Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres. Optics Express, 2004, 12, 299.	3.4	430
140	Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers. Optics Express, 2004, 12, 835.	3.4	152
141	Simple optical profiling of complex guiding structures. Applied Optics, 2004, 43, 29.	2.1	1
142	All-solid photonic bandgap fiber. Optics Letters, 2004, 29, 2369.	3.3	280
143	<title>Birefringent photonic crystal fiber with square lattice</title> ., 2004, , .		1
144	Delivery of high energy light through pbg fiber for laser machining. , 2004, , .		0

#	Article	IF	CITATIONS
145	Maximization of supercontinua in photonic crystal fibers by using double pulses and polarization effects. Applied Physics B: Lasers and Optics, 2003, 77, 319-324.	2.2	8
146	Two-core photonic crystal fibre for Doppler difference velocimetry. Optics Communications, 2003, 223, 375-380.	2.1	42
147	Modelling photonic crystal fibres. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 440-442.	2.7	21
148	Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres. Nature, 2003, 424, 511-515.	27.8	402
149	Photonic crystal fibres. Nature, 2003, 424, 847-851.	27.8	1,539
150	Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber. Optics Letters, 2003, 28, 2225.	3.3	292
151	High power air-clad photonic crystal fibre laser. Optics Express, 2003, 11, 48.	3.4	199
152	Polarization dependent harmonic generation in microstructured fibers. Optics Express, 2003, 11, 61.	3.4	49
153	Nonlinear generation of very high-order UV modes in microstructured fibers. Optics Express, 2003, 11, 910.	3.4	107
154	Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength. Optics Express, 2003, 11, 1613.	3.4	129
155	Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm. Optics Express, 2003, 11, 1980.	3.4	182
156	Phase-matched third harmonic generation in microstructured fibers. Optics Express, 2003, 11, 2567.	3.4	121
157	Tellurite photonic crystal fiber. Optics Express, 2003, 11, 2641.	3.4	198
158	Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers. Science, 2003, 301, 1705-1708.	12.6	459
159	High-power Er:Yb fiber laser with very high numerical aperture pump-cladding waveguide. Applied Physics Letters, 2003, 83, 817-818.	3.3	29
160	Ultrahigh-resolution optical coherence tomography in the visible and 1300-nm wavelength region. , 2003, 5140, 51.		0
161	Recent progress in photonic crystal fibers. , 2003, , .		1
162	Pulse dynamics in polarization-maintaining photonic crystal fibers. Springer Series in Chemical Physics, 2003, , 244-246.	0.2	0

#	Article	IF	CITATIONS
163	Soliton self-frequency shift effects in photonic crystal fibre. Journal of Modern Optics, 2002, 49, 757-767.	1.3	43
164	OPTICAL FREQUENCY MEASUREMENT USING AN ULTRAFAST MODE-LOCKED LASER AT NMIJ/AIST. , 2002, , .		10
165	Observation of soliton self-frequency shift in photonic crystal fibre. Electronics Letters, 2002, 38, 167.	1.0	42
166	Submicrometer axial resolution optical coherence tomography. Optics Letters, 2002, 27, 1800.	3.3	481
167	Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 753.	2.1	421
168	Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2148.	2.1	345
169	Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2165.	2.1	88
170	Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2567.	2.1	95
171	Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers. Physical Review Letters, 2002, 88, 173901.	7.8	465
172	APPLIED OPTICS: New Ways to Guide Light. Science, 2002, 296, 276-277.	12.6	220
173	Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber. Science, 2002, 298, 399-402.	12.6	926
174	Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber. Optics Letters, 2001, 26, 1158.	3.3	110
175	White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber. Optics Letters, 2001, 26, 1356.	3.3	283
176	Frequency control of a chirped-mirror-dispersion-controlled mode-locked Ti:Al 2 O 3 laser for comparison between microwave and optical frequencies. , 2001, , .		5
177	Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre. Optics Communications, 2001, 193, 97-104.	2.1	89
178	Microstructured Silica as an Optical-Fiber Material. MRS Bulletin, 2001, 26, 614-617.	3.5	9
179	Soliton effects in photonic crystal fibres at 850 nm. Electronics Letters, 2000, 36, 53.	1.0	144
180	Optical Frequency Synthesizer for Precision Spectroscopy. Physical Review Letters, 2000, 85, 2264-2267.	7.8	1,065

#	Article	IF	CITATIONS
181	Highly birefringent photonic crystal fibers. Optics Letters, 2000, 25, 1325.	3.3	860
182	Anomalous dispersion in photonic crystal fiber. IEEE Photonics Technology Letters, 2000, 12, 807-809.	2.5	596
183	Experimental study of dual-core photonic crystal fibre. Electronics Letters, 2000, 36, 1358.	1.0	133
184	Experimental measurement of group velocity dispersion in photonic crystal fibre. Electronics Letters, 1999, 35, 63.	1.0	122
185	Near-field optical microscopy of thin photonic crystal films. Journal of Applied Physics, 1999, 85, 6337-6342.	2.5	58
186	Photonic crystals as optical fibres – physics and applications. Optical Materials, 1999, 11, 143-151.	3.6	93
187	Single-Mode Photonic Band Gap Guidance of Light in Air. Science, 1999, 285, 1537-1539.	12.6	1,7 35
188	Dispersion compensation using single-material fibers. IEEE Photonics Technology Letters, 1999, 11, 674-676.	2.5	283
189	Highly increased photonic band gaps in silica/air structures. Optics Communications, 1998, 156, 240-244.	2.1	89
190	Bragg scattering from an obliquely illuminated photonic crystal fiber. Applied Optics, 1998, 37, 449.	2.1	33
191	Properties of photonic crystal fiber and the effective index model. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1998, 15, 748.	1.5	307
192	Large mode area photonic crystal fibre. Electronics Letters, 1998, 34, 1347.	1.0	443
193	Photonic Band Gap Guidance in Optical Fibers. , 1998, 282, 1476-1478.		1,097
194	Silica/Air Photonic Crystal Fibres. Japanese Journal of Applied Physics, 1998, 37, 45.	1.5	7
195	All-silica single-mode optical fiber with photonic crystal cladding:â€ferrata. Optics Letters, 1997, 22, 484.	3.3	145
196	Endlessly single-mode photonic crystal fiber. Optics Letters, 1997, 22, 961.	3.3	2,764
197	Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Optics Letters, 1997, 22, 1129.	3.3	803
198	All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 1996, 21, 1547.	3.3	2,757

#	Article	IF	CITATIONS
199	Mapping whispering-gallery modes in microspheres with a near-field probe. Optics Letters, 1995, 20, 1515.	3.3	115
200	Measurement of capillary core size and taper using whispering-gallery-mode laser emission. Optical Engineering, 1994, 33, 2838.	1.0	1