List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2778529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flexible and Robust 3D a‧iGe Radial Junction Nearâ€Infrared Photodetectors for Rapid Sphygmic Signal Monitoring. Advanced Functional Materials, 2022, 32, 2107040.	14.9	17
2	In situ observation of droplet nanofluidics for yielding low-dimensional nanomaterials. Applied Surface Science, 2022, 573, 151510.	6.1	4
3	Designable Integration of Silicide Nanowire Springs as Ultraâ€Compact and Stretchable Electronic Interconnections. Small, 2022, 18, e2104690.	10.0	8
4	Highly Stretchable Highâ€Performance Silicon Nanowire Field Effect Transistors Integrated on Elastomer Substrates. Advanced Science, 2022, 9, e2105623.	11.2	17
5	Innovative all-silicon based a-SiNx:O/c-Si heterostructure solar-blind photodetector with both high responsivity and fast response speed. APL Photonics, 2022, 7, .	5.7	5
6	Review on 3D growth engineering and integration of nanowires for advanced nanoelectronics and sensor applications. Nanotechnology, 2022, 33, 222002.	2.6	4
7	Tapering-free monocrystalline Ge nanowires synthesized via plasma-assisted VLS using In and Sn catalysts. Nanotechnology, 2022, , .	2.6	0
8	Non-invasive digital etching of van der Waals semiconductors. Nature Communications, 2022, 13, 1844.	12.8	8
9	Precise morphology control of in-plane silicon nanowires via a simple plasma pre-treatment. Applied Surface Science, 2022, 593, 153435.	6.1	4
10	Ultrathin 3D radial tandem-junction photocathode with a high onset potential of 1.15 V for solar hydrogen production. Chinese Journal of Catalysis, 2022, 43, 1842-1850.	14.0	1
11	Unexpected phosphorus doping routine of planar silicon nanowires for integrating CMOS logics. Nanoscale, 2021, 13, 15031-15037.	5.6	2
12	22.2: <i>Invited Paper:</i> Programmable integration of silicon nanowires into orderly and stretchable arrays for high performance thin film transistors. Digest of Technical Papers SID International Symposium, 2021, 52, 144-144.	0.3	0
13	<i>Ab Initio</i> Design, Shaping, and Assembly of Free-Standing Silicon Nanoprobes. Nano Letters, 2021, 21, 2773-2779.	9.1	15
14	Highly Sensitive Ammonia Gas Detection at Room Temperature by Integratable Silicon Nanowire Field-Effect Sensors. ACS Applied Materials & Interfaces, 2021, 13, 14377-14384.	8.0	42
15	Terrace-confined guided growth of high-density ultrathin silicon nanowire array for large area electronics. Nanotechnology, 2021, 32, 265602.	2.6	4
16	Coupled Investigation of Contact Potential and Microstructure Evolution of Ultra-Thin AlOx for Crystalline Si Passivation. Nanomaterials, 2021, 11, 1803.	4.1	0
17	Highly flexible radial tandem junction thin film solar cells with excellent power-to-weight ratio. Nano Energy, 2021, 86, 106121.	16.0	18
18	Robust neuronal differentiation of human iPSC-derived neural progenitor cells cultured on densely-spaced spiky silicon nanowire arrays. Scientific Reports, 2021, 11, 18819.	3.3	8

#	Article	IF	CITATIONS
19	Superfast Growth Dynamics of High-Quality Silicon Nanowires on Polymer Films via Self-Selected Laser-Droplet-Heating. Nano Letters, 2021, 21, 569-576.	9.1	9
20	Planar Growth, Integration, and Applications of Semiconducting Nanowires. Advanced Materials, 2020, 32, e1903945.	21.0	42
21	Facile 3D integration of Si nanowires on Bosch-etched sidewalls for stacked channel transistors. Nanoscale, 2020, 12, 2787-2792.	5.6	10
22	Germanium quantum dot infrared photodetectors addressed by self-aligned silicon nanowire electrodes. Nanotechnology, 2020, 31, 145602.	2.6	14
23	High Performance Si Nanowire TFTs With Ultrahigh on/off Current Ratio and Steep Subthreshold Swing. IEEE Electron Device Letters, 2020, 41, 46-49.	3.9	17
24	Photoelectric Cardiac Pacing by Flexible and Degradable Amorphous Si Radial Junction Stimulators. Advanced Healthcare Materials, 2020, 9, e1901342.	7.6	18
25	Unprecedented Uniform 3D Growth Integration of 10-Layer Stacked Si Nanowires on Tightly Confined Sidewall Grooves. Nano Letters, 2020, 20, 7489-7497.	9.1	17
26	Room-temperature valleytronic transistor. Nature Nanotechnology, 2020, 15, 743-749.	31.5	87
27	Corrections to "High Performance Si Nanowire TFTs With Ultrahigh On/Off Current Ratio and Steep Subthreshold Swing―[Jan 20 46-49]. IEEE Electron Device Letters, 2020, 41, 1604-1604.	3.9	0
28	Bias-selected full Red/Green/Blue color sensing and imaging based on inversely stacked radial PINIP junctions. Nano Futures, 2020, 4, 035007.	2.2	2
29	Cylindrical Line-Feeding Growth of Free-Standing Silicon Nanohelices as Elastic Springs and Resonators. Nano Letters, 2020, 20, 5072-5080.	9.1	16
30	Synergetic effect in rolling GaIn alloy droplets enables ultralow temperature growth of silicon nanowires at 70 ŰC on plastics. Nanoscale, 2020, 12, 8949-8957.	5.6	5
31	Bismuth-catalyzed n-type doping and growth evolution of planar silicon nanowires. Applied Physics Letters, 2020, 117, .	3.3	3
32	Perovskite Quantum Dot Photodetectors. Springer Series in Materials Science, 2020, , 181-218.	0.6	1
33	Advanced PECVD Processes for SiNW Based Solar Cells and Thin Film Transistors. , 2020, , .		0
34	Monolithic Integration of Silicon Nanowire Networks as a Soft Wafer for Highly Stretchable and Transparent Electronics. Nano Letters, 2019, 19, 6235-6243.	9.1	32
35	High-temperature stable plasmonic and cavity resonances in metal nanoparticle-decorated silicon nanopillars for strong broadband absorption in photothermal applications. Nanoscale, 2019, 11, 14777-14784.	5.6	19
36	The Effect of Decomposed PbI2 on Microscopic Mechanisms of Scattering in CH3NH3PbI3 Films. Nanoscale Research Letters, 2019, 14, 208.	5.7	33

#	Article	IF	CITATIONS
37	Nanoscale Photovoltaic Responses in 3D Radial Junction Solar Cells Revealed by High Spatial Resolution Laser Excitation Photoelectric Microscopy. ACS Nano, 2019, 13, 10359-10365.	14.6	6
38	Highly stretchable graphene nanoribbon springs by programmable nanowire lithography. Npj 2D Materials and Applications, 2019, 3, .	7.9	20
39	Meandering growth of in-plane silicon nanowire springs. Applied Physics Letters, 2019, 114, .	3.3	11
40	3D Sidewall Integration of Ultrahighâ€Đensity Silicon Nanowires for Stacked Channel Electronics. Advanced Electronic Materials, 2019, 5, 1800627.	5.1	17
41	Plasmon Excited Ultrahot Carriers and Negative Differential Photoresponse in a Vertical Graphene van der Waals Heterostructure. Nano Letters, 2019, 19, 3295-3304.	9.1	28
42	Advanced radial junction thin film photovoltaics and detectors built on standing silicon nanowires. Nanotechnology, 2019, 30, 302001.	2.6	13
43	High Efficient Hole Extraction and Stable Allâ€Bromide Inorganic Perovskite Solar Cells via Derivativeâ€Phase Gradient Bandgap Architecture. Solar Rrl, 2019, 3, 1900030.	5.8	67
44	Three-dimensional a-Si/a-Ge radial heterojunction near-infrared photovoltaic detector. Scientific Reports, 2019, 9, 19752.	3.3	9
45	Coupled boron-doping and geometry control of tin-catalyzed silicon nanowires for high performance radial junction photovoltaics. Optics Express, 2019, 27, 37248.	3.4	9
46	Polymorphous Nano-Si and Radial Junction Solar Cells. , 2019, , 879-931.		0
47	Mixed cation perovskite solar cells by stack-sequence chemical vapor deposition with self-passivation and gradient absorption layer. Nano Energy, 2018, 48, 536-542.	16.0	70
48	Engineering in-plane silicon nanowire springs for highly stretchable electronics. Journal of Semiconductors, 2018, 39, 011001.	3.7	16
49	Dualâ€Phase CsPbBr ₃ –CsPb ₂ Br ₅ Perovskite Thin Films via Vapor Deposition for Highâ€Performance Rigid and Flexible Photodetectors. Small, 2018, 14, 1702523.	10.0	139
50	A bottom-up synthetic hierarchical buffer structure of copper silicon nanowire hybrids as ultra-stable and high-rate lithium-ion battery anodes. Journal of Materials Chemistry A, 2018, 6, 7877-7886.	10.3	44
51	Enhancing Hybrid Perovskite Detectability in the Deep Ultraviolet Region with Down-Conversion Dual-Phase (CsPbBr ₃ –Cs ₄ PbBr ₆) Films. Journal of Physical Chemistry Letters, 2018, 9, 1592-1599.	4.6	82
52	Allâ€Inorganic Perovskite Quantum Dots/pâ€Si Heterojunction Lightâ€Emitting Diodes under DC and AC Driving Modes. Advanced Optical Materials, 2018, 6, 1700897.	7.3	39
53	Omnidirectional and effective salt-rejecting absorber with rationally designed nanoarchitecture for efficient and durable solar vapour generation. Journal of Materials Chemistry A, 2018, 6, 22976-22986.	10.3	48
54	Deterministic deployment of in-plane silicon nanowires for high performance large area electronics. , 2018, , .		0

#	Article	IF	CITATIONS
55	Low Power Consumption Red Light-Emitting Diodes Based on Inorganic Perovskite Quantum Dots under an Alternating Current Driving Mode. Nanomaterials, 2018, 8, 974.	4.1	17
56	Nanodroplet Hydrodynamic Transformation of Uniform Amorphous Bilayer into Highly Modulated Ge/Si Island-Chains. Nano Letters, 2018, 18, 6931-6940.	9.1	16
5 7	Rational Energy Band Alignment and Au Nanoparticles in Surface Plasmon Enhanced Siâ€Based Perovskite Quantum Dot Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1800693.	7.3	32
58	Fast-Response and Low-Hysteresis Flexible Pressure Sensor Based on Silicon Nanowires. IEEE Electron Device Letters, 2018, 39, 1069-1072.	3.9	43
59	Firmly standing three-dimensional radial junctions on soft aluminum foils enable extremely low cost flexible thin film solar cells with very high power-to-weight performance. Nano Energy, 2018, 53, 83-90.	16.0	25
60	Polymorphous Nano-Si and Radial Junction Solar Cells. , 2018, , 1-53.		0
61	High performance transparent in-plane silicon nanowire Fin-TFTs via a robust nano-droplet-scanning crystallization dynamics. Nanoscale, 2017, 9, 10350-10357.	5.6	33
62	Natural occurrence of the diamond hexagonal structure in silicon nanowires grown by a plasma-assisted vapour–liquid–solid method. Nanoscale, 2017, 9, 8113-8118.	5.6	34
63	Quantum Dots: Ultrafast Solarâ€Blind Ultraviolet Detection by Inorganic Perovskite CsPbX ₃ Quantum Dots Radial Junction Architecture (Adv. Mater. 23/2017). Advanced Materials, 2017, 29, .	21.0	1
64	Cadmium-doped flexible perovskite solar cells with a low-cost and low-temperature-processed CdS electron transport layer. RSC Advances, 2017, 7, 19457-19463.	3.6	48
65	Rapid, stable and self-powered perovskite detectors via a fast chemical vapor deposition process. RSC Advances, 2017, 7, 18224-18230.	3.6	57
66	Ultrafast Solarâ€Blind Ultraviolet Detection by Inorganic Perovskite CsPbX ₃ Quantum Dots Radial Junction Architecture. Advanced Materials, 2017, 29, 1700400.	21.0	129
67	On the Mechanism of In Nanoparticle Formation by Exposing ITO Thin Films to Hydrogen Plasmas. Langmuir, 2017, 33, 12114-12119.	3.5	5
68	Biomimetic Radial Tandem Junction Photodetector with Natural RGB Color Discrimination Capability. Advanced Optical Materials, 2017, 5, 1700390.	7.3	15
69	Deterministic Line-Shape Programming of Silicon Nanowires for Extremely Stretchable Springs and Electronics. Nano Letters, 2017, 17, 7638-7646.	9.1	41
70	Surface-activation modified perovskite crystallization for improving photovoltaic performance. Materials Today Energy, 2017, 5, 173-180.	4.7	31
71	An Optimized FinFET Channel With Improved Line-Edge Roughness and Linewidth Roughness Using the Hydrogen Thermal Treatment Technology. IEEE Nanotechnology Magazine, 2017, 16, 1081-1087.	2.0	10
72	CuO nanowires-based Radial hetero-junction thin film silicon solar cells with a high open-circuit voltage. , 2017, , .		0

#	Article	IF	CITATIONS
73	Improved Efficiency of Silicon Nanoholes/Gold Nanoparticles/Organic Hybrid Solar Cells via Localized Surface Plasmon Resonance. Nanoscale Research Letters, 2016, 11, 160.	5.7	17
74	Light Harvesting and Enhanced Performance of Si Quantum Dot/Si Nanowire Heterojunction Solar Cells. Particle and Particle Systems Characterization, 2016, 33, 38-43.	2.3	13
75	Heteroepitaxial Writing of Silicon-on-Sapphire Nanowires. Nano Letters, 2016, 16, 7317-7324.	9.1	18
76	Engineering island-chain silicon nanowires via a droplet mediated Plateau-Rayleigh transformation. Nature Communications, 2016, 7, 12836.	12.8	49
77	Enhanced up-conversion luminescence from NaYF ₄ :Yb,Er nanocrystals by Gd ³⁺ ions induced phase transformation and plasmonic Au nanosphere arrays. RSC Advances, 2016, 6, 102869-102874.	3.6	17
78	Inâ€Plane Selfâ€Turning and Twin Dynamics Renders Large Stretchability to Monoâ€Like Zigzag Silicon Nanowire Springs. Advanced Functional Materials, 2016, 26, 5352-5359.	14.9	34
79	Highly Connected Silicon–Copper Alloy Mixture Nanotubes as Highâ€Rate and Durable Anode Materials for Lithiumâ€Ion Batteries. Advanced Functional Materials, 2016, 26, 524-531.	14.9	110
80	Hierarchical nano-branched c-Si/SnO2 nanowires for high areal capacity and stable lithium-ion battery. Nano Energy, 2016, 19, 511-521.	16.0	52
81	Highly cross-linked Cu/a-Si core–shell nanowires for ultra-long cycle life and high rate lithium batteries. Nanoscale, 2016, 8, 2613-2619.	5.6	33
82	Bi-Sn alloy catalyst for simultaneous morphology and doping control of silicon nanowires in radial junction solar cells. Applied Physics Letters, 2015, 107, .	3.3	18
83	Operating principles of in-plane silicon nanowires at simple step-edges. Nanoscale, 2015, 7, 5197-5202.	5.6	22
84	Understanding Light Harvesting in Radial Junction Amorphous Silicon Thin Film Solar Cells. Scientific Reports, 2015, 4, 4357.	3.3	44
85	Investigating inhomogeneous electronic properties of radial junction solar cells using correlative microscopy. Japanese Journal of Applied Physics, 2015, 54, 08KA08.	1.5	7
86	Correlative microscopy of radial junction nanowire solar cells using nanoindent position markers. Solar Energy Materials and Solar Cells, 2015, 135, 106-112.	6.2	11
87	Boosting light emission from Si-based thin film over Si and SiO_2 nanowires architecture. Optics Express, 2015, 23, 5388.	3.4	8
88	How tilting and cavity-mode-resonant absorption contribute to light harvesting in 3D radial junction solar cells. Optics Express, 2015, 23, A1288.	3.4	15
89	Full potential of radial junction Si thin film solar cells with advanced junction materials and design. Applied Physics Letters, 2015, 107, .	3.3	20
90	New Approaches to Improve the Performance of Thin-Film Radial Junction Solar Cells Built Over Silicon Nanowire Arrays. IEEE Journal of Photovoltaics, 2015, 5, 40-45.	2.5	35

#	Article	IF	CITATIONS
91	A review on plasma-assisted VLS synthesis of silicon nanowires and radial junction solar cells. Journal Physics D: Applied Physics, 2014, 47, 393001.	2.8	73
92	Mo-O bond doping and related-defect assisted enhancement of photoluminescence in monolayer MoS ₂ . AlP Advances, 2014, 4, 123004.	1.3	69
93	In-Plane Epitaxial Growth of Silicon Nanowires and Junction Formation on Si(100) Substrates. Nano Letters, 2014, 14, 6469-6474.	9.1	31
94	Type-II core–shell Si–CdS nanocrystals: synthesis and spectroscopic and electrical properties. Chemical Communications, 2014, 50, 11922-11925.	4.1	11
95	Incorporation and redistribution of impurities into silicon nanowires during metal-particle-assisted growth. Nature Communications, 2014, 5, 4134.	12.8	91
96	Sn atalyzed silicon nanowire solar cells with 4.9% efficiency grown on glass. Progress in Photovoltaics: Research and Applications, 2013, 21, 77-81.	8.1	37
97	Wetting Layer: The Key Player in Plasma-Assisted Silicon Nanowire Growth Mediated by Tin. Journal of Physical Chemistry C, 2013, 117, 17786-17790.	3.1	44
98	Microscopic measurements of variations in local (photo)electronic properties in nanostructured solar cells. Solar Energy Materials and Solar Cells, 2013, 119, 228-234.	6.2	11
99	High efficiency and stable hydrogenated amorphous silicon radial junction solar cells built on VLS-grown silicon nanowires. Solar Energy Materials and Solar Cells, 2013, 118, 90-95.	6.2	107
100	Assessing individual radial junction solar cells over millions on VLS-grown silicon nanowires. Nanotechnology, 2013, 24, 275401.	2.6	23
101	Theoretical short-circuit current density for different geometries and organizations of silicon nanowires in solar cells. Solar Energy Materials and Solar Cells, 2013, 117, 645-651.	6.2	33
102	Bismuth-Catalyzed and Doped Silicon Nanowires for One-Pump-Down Fabrication of Radial Junction Solar Cells. Nano Letters, 2012, 12, 4153-4158.	9.1	76
103	Silicon nanowire solar cells grown by PECVD. Journal of Non-Crystalline Solids, 2012, 358, 2299-2302.	3.1	47
104	Radial junction amorphous silicon solar cells on PECVD-grown silicon nanowires. Nanotechnology, 2012, 23, 194011.	2.6	42
105	Morphology control and growth dynamics of in-plane solid–liquid–solid silicon nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1045-1049.	2.7	8
106	Growth-in-place deployment of in-plane silicon nanowires. Applied Physics Letters, 2011, 99, .	3.3	38
107	An analyzing of anomalous peak in the capacitance-voltage characteristics at Hg/GaN Schottky contact. , 2011, , .		0
108	Stability and evolution of low-surface-tension metal catalyzed growth of silicon nanowires. Applied Physics Letters, 2011, 98.	3.3	31

#	Article	IF	CITATIONS
109	Optical absorption in vertical silicon nanowires for solar cell applications. Proceedings of SPIE, 2011, , .	0.8	8
110	Growth study of indium-catalyzed silicon nanowires by plasma enhanced chemical vapor deposition. Applied Physics A: Materials Science and Processing, 2010, 100, 287-296.	2.3	49
111	All-in-situ fabrication and characterization of silicon nanowires on TCO/glass substrates for photovoltaic application. Solar Energy Materials and Solar Cells, 2010, 94, 1855-1859.	6.2	43
112	Catalyst formation and growth of Sn- and In-catalyzed silicon nanowires. Materials Research Society Symposia Proceedings, 2010, 1258, 1.	0.1	1
113	Growth mechanism and dynamics of in-plane solid-liquid-solid silicon nanowires. Physical Review B, 2010, 81, .	3.2	54
114	Core-shell structure and unique faceting of Sn-catalyzed silicon nanowires. Applied Physics Letters, 2010, 97, 023107.	3.3	39
115	Initial nucleation and growth of in-plane solid-liquid-solid silicon nanowires catalyzed by indium. Physical Review B, 2009, 80, .	3.2	43
116	An In-Plane Solid-Liquid-Solid Growth Mode for Self-Avoiding Lateral Silicon Nanowires. Physical Review Letters, 2009, 102, 125501.	7.8	68
117	Guided growth of in-plane silicon nanowires. Applied Physics Letters, 2009, 95, .	3.3	37
118	Guided growth of in-plane lateral SiNWs led by indium catalysts. Materials Research Society Symposia Proceedings, 2009, 1178, 92.	0.1	1
119	Gallium assisted plasma enhanced chemical vapor deposition of silicon nanowires. Nanotechnology, 2009, 20, 155602.	2.6	68
120	Plasma-enhanced low temperature growth of silicon nanowires and hierarchical structures by using tin and indium catalysts. Nanotechnology, 2009, 20, 225604.	2.6	110
121	In situ generation of indium catalysts to grow crystalline silicon nanowires at low temperature on ITO. Journal of Materials Chemistry, 2008, 18, 5187.	6.7	81
122	Synthesis, morphology and compositional evolution of silicon nanowires directly grown on SnO2substrates. Nanotechnology, 2008, 19, 485605.	2.6	50