Sanjit Mitra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2778011/publications.pdf

Version: 2024-02-01

		5268	5988
162	46,945	83	160
papers	citations	h-index	g-index
163	163	163	22947
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A13.	5.1	8,344
2	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A6.	5.1	6,722
3	<i>Planck</i> 2013 results. XVI. Cosmological parameters. Astronomy and Astrophysics, 2014, 571, A16.	5.1	4,703
4	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A10.	5.1	1,261
5	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A20.	5.1	1,233
6	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	4.0	1,029
7	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	4.0	956
8	<i>Planck</i> 2013 results. I. Overview of products and scientific results. Astronomy and Astrophysics, 2014, 571, A1.	5.1	948
9	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	31.4	825
10	Joint Analysis of BICEP2/ <i>Keck Array</i> and <i>Planck</i> Data. Physical Review Letters, 2015, 114, 101301.	7.8	819
11	<i>Planck</i> 2013 results. XXII. Constraints on inflation. Astronomy and Astrophysics, 2014, 571, A22.	5.1	806
12	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A1.	5.1	804
13	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A1.	5.1	738
14	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
15	<i>Planck</i> 2013 results. XI. All-sky model of thermal dust emission. Astronomy and Astrophysics, 2014, 571, A11.	5.1	566
16	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A27.	5.1	535
17	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A24.	5.1	525
18	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466

#	Article	IF	CITATIONS
19	<i>Planck</i> >2013 results. XX. Cosmology from Sunyaevâ€"Zeldovich cluster counts. Astronomy and Astrophysics, 2014, 571, A20.	5.1	465
20	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
21	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
22	<i>Planck</i> early results. I. The <i>Planck</i> mission. Astronomy and Astrophysics, 2011, 536, A1.	5.1	394
23	<i>Planck</i> 2013 results. XXIX. The <i>Planck</i> catalogue of Sunyaev-Zeldovich sources. Astronomy and Astrophysics, 2014, 571, A29.	5.1	380
24	<i>Planck</i> 2013 results. XXIII. Isotropy and statistics of the CMB. Astronomy and Astrophysics, 2014, 571, A23.	5.1	367
25	<i>Planck</i> 2013 results. XV. CMB power spectra and likelihood. Astronomy and Astrophysics, 2014, 571, A15.	5.1	364
26	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A15.	5.1	360
27	<i>Planck</i> 2013 results. XXIV. Constraints on primordial non-Gaussianity. Astronomy and Astrophysics, 2014, 571, A24.	5.1	350
28	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A16.	5.1	338
29	<i>Planck</i> early results. VIII. The all-sky early Sunyaev-Zeldovich cluster sample. Astronomy and Astrophysics, 2011, 536, A8.	5.1	335
30	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 550, A131.	5.1	276
31	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A19.	5.1	273
32	$\mbox{\sc i}\mbox{\sc Planck}\mbox{\sc /i}\mbox{\sc 2013}$ results. XVII. Gravitational lensing by large-scale structure. Astronomy and Astrophysics, 2014, 571, A17.	5.1	272
33	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	7.8	269
34	Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation, 2012, 7, P03012-P03012.	1.2	257
35	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
36	<i>Planck</i> early results. VII. The Early Release Compact Source Catalogue. Astronomy and Astrophysics, 2011, 536, A7.	5.1	224

#	Article	IF	Citations
37	<i>Planck</i> 2013 results. XXV. Searches for cosmic strings and other topological defects. Astronomy and Astrophysics, 2014, 571, A25.	5.1	223
38	<i>Planck</i> 2013 results. XII. Diffuse component separation. Astronomy and Astrophysics, 2014, 571, A12.	5.1	216
39	<i>Planck</i> 2013 results. XXX. Cosmic infrared background measurements and implications for star formation. Astronomy and Astrophysics, 2014, 571, A30.	5.1	210
40	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A8.	5.1	209
41	<i>Planck</i> early results. XXV. Thermal dust in nearby molecular clouds. Astronomy and Astrophysics, 2011, 536, A25.	5.1	184
42	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A26.	5.1	182
43	<i>Planck</i> early results. XVIII. The power spectrum of cosmic infrared background anisotropies. Astronomy and Astrophysics, 2011, 536, A18.	5.1	180
44	<i>Planck</i> early results. XI. Calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations. Astronomy and Astrophysics, 2011, 536, A11.	5.1	174
45	<i>Planck</i> 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove. Astronomy and Astrophysics, 2014, 571, A27.	5.1	170
46	<i>Planck</i> 2013 results. XXVIII. The <i>Planck</i> Catalogue of Compact Sources. Astronomy and Astrophysics, 2014, 571, A28.	5.1	162
47	<i>Planck</i> early results. XX. New light on anomalous microwave emission from spinning dust grains. Astronomy and Astrophysics, 2011, 536, A20.	5.1	155
48	<i>Planck</i> early results. XXIII. The first all-sky survey of Galactic cold clumps. Astronomy and Astrophysics, 2011, 536, A23.	5.1	152
49	<i>Planck</i> 2013 results. XIII. Galactic CO emission. Astronomy and Astrophysics, 2014, 571, A13.	5.1	144
50	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
51	Implications for the Origin of GRB 070201 from LIGO Observations. Astrophysical Journal, 2008, 681, 1419-1430.	4.5	143
52	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 557, A52.	5.1	141
53	Planck intermediate results. Astronomy and Astrophysics, 2014, 566, A55.	5.1	134
54	<i>Planck</i> 2013 results. XXI. Power spectrum and high-order statistics of the <i>Planck</i> ll-sky Compton parameter map. Astronomy and Astrophysics, 2014, 571, A21.	5.1	133

#	Article	IF	Citations
55	<i>Planck</i> 2013 results. IX. HFI spectral response. Astronomy and Astrophysics, 2014, 571, A9.	5.1	129
56	 i>Planck $$ i>2013 results. XIX. The integrated Sachs-Wolfe effect. A stronomy and Astrophysics, 2014, 571, A19.	5.1	126
57	<i>Planck</i> early results. IX. <i>XMM-Newton</i> follow-up for validation of <i>Planck</i> cluster candidates. Astronomy and Astrophysics, 2011, 536, A9.	5.1	126
58	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	4.5	125
59	<i>Planck</i> early results. X. Statistical analysis of Sunyaev-Zeldovich scaling relations for X-ray galaxy clusters. Astronomy and Astrophysics, 2011, 536, A10.	5.1	124
60	Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory. Astrophysical Journal, 2007, 659, 918-930.	4.5	120
61	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A12.	5.1	117
62	$\mbox{\sc i}\mbox{\sc Planck-/i}\mbox{\sc early results.}$ VI. The High Frequency Instrument data processing. Astronomy and Astrophysics, 2011, 536, A6.	5.1	116
63	<i>Planck</i> 2013 results. XVIII. The gravitational lensing-infrared background correlation. Astronomy and Astrophysics, 2014, 571, A18.	5.1	116
64	<i>Planck</i> early results. III. First assessment of the Low Frequency Instrument in-flight performance. Astronomy and Astrophysics, 2011, 536, A3.	5.1	108
65	<i>Planck</i> 2013 results. VIII. HFI photometric calibration and mapmaking. Astronomy and Astrophysics, 2014, 571, A8.	5.1	107
66	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 554, A139.	5.1	106
67	FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR. Astrophysical Journal, 2010, 722, 1504-1513.	4.5	104
68	<i>Planck</i> 2013 results. VI. High Frequency Instrument data processing. Astronomy and Astrophysics, 2014, 571, A6.	5.1	103
69	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 554, A140.	5.1	101
70	<i>Planck</i> early results. XII. Cluster Sunyaev-Zeldovich optical scaling relations. Astronomy and Astrophysics, 2011, 536, A12.	5.1	100
71	<i>Planck</i> 2013 results. VII. HFI time response and beams. Astronomy and Astrophysics, 2014, 571, A7.	5.1	99
72	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	7.8	94

#	Article	IF	Citations
73	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 550, A134.	5.1	94
74	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A7.	5.1	94
75	<i>Planck</i> early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources. Astronomy and Astrophysics, 2011, 536, A15.	5.1	93
76	<i>Planck</i> 2013 results. XXVI. Background geometry and topology of the Universe. Astronomy and Astrophysics, 2014, 571, A26.	5.1	91
77	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	4.5	90
78	<i>Planck</i> 2013 results. XIV. Zodiacal emission. Astronomy and Astrophysics, 2014, 571, A14.	5.1	90
79	Upper Limits on a Stochastic Background of Gravitational Waves. Physical Review Letters, 2005, 95, 221101.	7.8	89
80	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A23.	5.1	89
81	Probing the anisotropies of a stochastic gravitational-wave background using a network of ground-based laser interferometers. Physical Review D, 2009, 80, .	4.7	88
82	<i>Planck</i> early results. XXII. The submillimetre properties of a sample of Galactic cold clumps. Astronomy and Astrophysics, 2011, 536, A22.	5.1	88
83	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	7.8	86
84	All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data. Physical Review Letters, 2009, 102, 111102.	7.8	83
85	<i>Planck</i> iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	5.1	80
86	<i>Planck</i> iiiintermediate results. Astronomy and Astrophysics, 2014, 561, A97.	5.1	80
87	<i>Planck</i> 2013 results. XXXII. The updated <i>Planck</i> catalogue of Sunyaev-Zeldovich sources. Astronomy and Astrophysics, 2015, 581, A14.	5.1	80
88	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A2.	5.1	79
89	Search for gravitational-wave bursts in LIGO data from the fourth science run. Classical and Quantum Gravity, 2007, 24, 5343-5369.	4.0	78
90	<i>Planck</i> early results. V. The Low Frequency Instrument data processing. Astronomy and Astrophysics, 2011, 536, A5.	5.1	77

#	Article	IF	Citations
91	First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform. Physical Review D, 2005, 72, .	4.7	75
92	Search for gravitational waves from binary black hole inspirals in LIGO data. Physical Review D, 2006, 73, .	4.7	75
93	<i>Planck</i> 2013 results. II. Low Frequency Instrument data processing. Astronomy and Astrophysics, 2014, 571, A2.	5.1	74
94	Gravitational wave radiometry: Mapping a stochastic gravitational wave background. Physical Review D, 2008, 77, .	4.7	70
95	Search for Gravitational-Wave Bursts from Soft Gamma Repeaters. Physical Review Letters, 2008, 101, 211102.	7.8	69
96	<i>Planck</i> 2013 results. XXXI. Consistency of the <i>Planck</i> data. Astronomy and Astrophysics, 2014, 571, A31.	5.1	69
97	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
98	<i>Planck</i> 2013 results. X. HFI energetic particle effects: characterization, removal, and simulation. Astronomy and Astrophysics, 2014, 571, A10.	5.1	68
99	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	7.8	68
100	<i>Planck</i> 2013 results. V. LFI calibration. Astronomy and Astrophysics, 2014, 571, A5.	5.1	67
101	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	4.5	66
102	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 550, A129.	5.1	63
103	FAST PIXEL SPACE CONVOLUTION FOR COSMIC MICROWAVE BACKGROUND SURVEYS WITH ASYMMETRIC BEAMS AND COMPLEX SCAN STRATEGIES: FEBeCoP. Astrophysical Journal, Supplement Series, 2011, 193, 5.	7.7	58
104	Upper limits on gravitational wave bursts in LIGO's second science run. Physical Review D, 2005, 72, .	4.7	57
105	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	7.7	57
106	Transient classification in LIGO data using difference boosting neural network. Physical Review D, 2017, 95, .	4.7	57
107	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A4.	5.1	56
108	<i>Planck</i> intermediate results. XIV. Dust emission at millimetre wavelengths in the Galactic plane. Astronomy and Astrophysics, 2014, 564, A45.	5.1	55

#	Article	IF	CITATIONS
109	Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals. Physical Review D, 2008, 78, .	4.7	54
110	<i>Planck</i> 2013 results. III. LFI systematic uncertainties. Astronomy and Astrophysics, 2014, 571, A3.	5.1	54
111	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A3.	5.1	53
112	Multitransonic Black Hole Accretion Disks with Isothermal Standing Shocks. Astrophysical Journal, 2003, 592, 1078-1088.	4.5	52
113	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 550, A133.	5.1	52
114	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
115	Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts. Physical Review D, 2005, 72, .	4.7	49
116	<i>Planck </i> intermediate results. Astronomy and Astrophysics, 2017, 599, A51.	5.1	46
117	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	4.0	42
118	<i>Planck</i> >2013 results. IV. Low Frequency Instrument beams and window functions. Astronomy and Astrophysics, 2014, 571, A4.	5.1	41
119	Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries. Physical Review D, 2006, 73, .	4.7	40
120	Search for gravitational-wave bursts in LIGO's third science run. Classical and Quantum Gravity, 2006, 23, \$29-\$39.	4.0	40
121	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2015, 580, A13.	5.1	37
122	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 550, A130.	5.1	36
123	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	4.0	34
124	Towards a first design of a Newtonian-noise cancellation system for Advanced LIGO. Classical and Quantum Gravity, 2016, 33, 244001.	4.0	34
125	Very fast stochastic gravitational wave background map making using folded data. Physical Review D, 2018, 98, .	4.7	27
126	Astrophysically triggered searches for gravitational waves: status and prospects. Classical and Quantum Gravity, 2008, 25, 114051.	4.0	26

#	Article	IF	CITATIONS
127	Stochastic gravitational wave background from exoplanets. Physical Review D, 2015, 91, .	4.7	26
128	Fast gravitational wave radiometry using data folding. Physical Review D, 2015, 92, .	4.7	25
129	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 596, A102.	5.1	25
130	First joint search for gravitational-wave bursts in LIGO and GEO 600 data. Classical and Quantum Gravity, 2008, 25, 245008.	4.0	22
131	CMB power spectrum estimation using noncircular beams. Physical Review D, 2004, 70, .	4.7	21
132	Astrophysical motivation for directed searches for a stochastic gravitational wave background. Physical Review D, 2014, 89, .	4.7	21
133	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 550, A128.	5.1	20
134	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
135	<i>Planck</i> Âintermediate results. XII: Diffuse Galactic components in the Gould Belt system. Astronomy and Astrophysics, 2013, 557, A53.	5.1	19
136	Lock acquisition of the Virgo gravitational wave detector. Astroparticle Physics, 2008, 30, 29-38.	4.3	16
137	Gravitational wave burst search in the Virgo C7 data. Classical and Quantum Gravity, 2009, 26, 085009.	4.0	16
138	Multibaseline gravitational wave radiometry. Physical Review D, 2011, 83, .	4.7	15
139	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 550, A132.	5.1	15
140	Component separation of a isotropic Gravitational Wave Background. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 024-024.	5.4	15
141	Gravitational wave observatories may be able to detect hyperbolic encounters of black holes. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5064-5073.	4.4	15
142	Improving the efficiency of the detection of gravitational wave signals from inspiraling compact binaries: Chebyshev interpolation. Physical Review D, 2005, 72, .	4.7	12
143	Unified mapmaking for an anisotropic stochastic gravitational wave background. Physical Review D, 2021, 103, .	4.7	12
144	Improving significance of binary black hole mergers in Advanced LIGO data using deep learning: Confirmation of GW151216. Physical Review D, 2021, 104, .	4.7	12

#	Article	IF	CITATIONS
145	All-sky, narrowband, gravitational-wave radiometry with folded data. Physical Review D, 2015, 91, .	4.7	10
146	Statistical isotropy violation in WMAP CMB maps resulting from non-circular beams. Astronomy and Astrophysics, 2016, 591, A97.	5.1	9
147	Non-circular beam correction to the CMB power spectrum. New Astronomy Reviews, 2006, 50, 1030-1035.	12.8	8
148	Noise studies during the first Virgo science run and after. Classical and Quantum Gravity, 2008, 25, 184003.	4.0	8
149	Laser with an in-loop relative frequency stability of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1.0</mml:mn><mml:mo>\tilde{A}—</mml:mo><mml:msup><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mm< td=""><td>:min>10<td>mml:mn><</td></td></mm<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msup></mml:mrow></mml:math>	:min>10 <td>mml:mn><</td>	mml:mn><
150	Cosmic microwave background power spectrum estimation with non-circular beam and incomplete sky coverage. Monthly Notices of the Royal Astronomical Society, 2009, 394, 1419-1439.	4.4	8
151	Stochastic gravitational wave background mapmaking using regularized deconvolution. Physical Review D, 2019, 100, .	4.7	8
152	Upper limits on persistent gravitational waves using folded data and the full covariance matrix from Advanced LIGO's first two observing runs. Physical Review D, 2021, 104, .	4.7	8
153	Orthogonal bipolar spherical harmonics measures: Scrutinizing sources of isotropy violation. Physical Review D, 2015, 91, .	4.7	7
154	Estimating statistical isotropy violation in CMB due to non-circular beam and complex scan in minutes. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 035-035.	5.4	5
155	Hierarchical search strategy for the efficient detection of gravitational waves from nonprecessing coalescing compact binaries with aligned-spins. Physical Review D, 2019, 99, .	4.7	5
156	Effect of induced seismicity on advanced gravitational wave interferometers. Classical and Quantum Gravity, 2019, 36, 10LT01.	4.0	5
157	Effect of noncircularity of experimental beam on CMB parameter estimation. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 048-048.	5.4	4
158	Jointly setting upper limits on multiple components of an anisotropic stochastic gravitational-wave background. Physical Review D, $2021,104,.$	4.7	4
159	Hierarchical search for compact binary coalescences in the Advanced LIGO's first two observing runs. Physical Review D, 2022, 105, .	4.7	4
160	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1
161	Working group report: Astroparticle and neutrino physics. Pramana - Journal of Physics, 2006, 67, 735-742.	1.8	O
162	Fast algorithm for the computation of the CMB polarization TE power spectrum using non-circular beam. New Astronomy, 2018, 64, 44-60.	1.8	0