Gabriele Sorci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2777499/publications.pdf

Version: 2024-02-01

36303 49909 8,269 129 51 87 citations h-index g-index papers 132 132 132 6704 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Assessing the Cost of Mounting an Immune Response. American Naturalist, 2003, 161, 367-379.	2.1	466
2	Increased susceptibility to oxidative stress as a proximate cost of reproduction. Ecology Letters, 2004, 7, 363-368.	6.4	357
3	Immune Activation Rapidly Mirrored in a Secondary Sexual Trait. Science, 2003, 300, 103-103.	12.6	352
4	Testosterone and oxidative stress: the oxidation handicap hypothesis. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 819-825.	2.6	295
5	An Experimental Test of the Doseâ€Dependent Effect of Carotenoids and Immune Activation on Sexual Signals and Antioxidant Activity. American Naturalist, 2004, 164, 651-659.	2.1	290
6	Inflammation and oxidative stress in vertebrate host–parasite systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 71-83.	4.0	254
7	Trade-off between immunocompetence and growth in magpies: an experimental study. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 241-248.	2.6	216
8	Explaining among-country variation in COVID-19 case fatality rate. Scientific Reports, 2020, 10, 18909.	3.3	204
9	Immunocompetence and condition-dependent sexual advertisement in male house sparrows (Passer) Tj ETQq1 I	1 0.7.8431	4 rgBT /Overla
10	AN EXPERIMENTAL MANIPULATION OF LIFE-HISTORY TRAJECTORIES AND RESISTANCE TO OXIDATIVE STRESS. Evolution; International Journal of Organic Evolution, 2006, 60, 1913-1924.	2.3	192
11	Demographic Stochasticity and Social Mating System in the Process of Extinction of Small Populations: The Case of Passerines Introduced to New Zealand. American Naturalist, 1999, 153, 449-463.	2.1	191
12	MAJOR HISTOCOMPATIBILITY ALLELES ASSOCIATED WITH LOCAL RESISTANCE TO MALARIA IN A PASSERINE. Evolution; International Journal of Organic Evolution, 2006, 60, 383-389.	2.3	186
13	Complex Mhc -based mate choice in a wild passerine. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1111-1116.	2.6	175
14	Patterns of aging in the long-lived wandering albatross. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6370-6375.	7.1	162
15	TERMINAL INVESTMENT INDUCED BY IMMUNE CHALLENGE AND FITNESS TRAITS ASSOCIATED WITH MAJOR HISTOCOMPATIBILITY COMPLEX IN THE HOUSE SPARROW. Evolution; International Journal of Organic Evolution, 2004, 58, 2823-2830.	2.3	155
16	Sexual selection affects local extinction and turnover in bird communities. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5858-5862.	7.1	139
17	Genetics of host-parasite interactions. Trends in Ecology and Evolution, 1997, 12, 196-200.	8.7	122
18	Testosterone and sexual signalling in male house sparrows (Passer domesticus). Behavioral Ecology and Sociobiology, 2001, 50, 557-562.	1.4	121

#	Article	IF	CITATIONS
19	Ultraviolet reflectance affects male-male interactions in the blue tit (Parus caeruleus ultramarinus). Behavioral Ecology, 2004, 15, 805-809.	2.2	120
20	Carotenoids modulate the trade-off between egg production and resistance to oxidative stress in zebra finches. Oecologia, 2006, 147, 576-584.	2.0	117
21	Multiple sexual advertisements honestly reflect health status in peacocks (Pavo cristatus). Behavioral Ecology and Sociobiology, 2005, 58, 552-557.	1.4	112
22	Effects of experimental increase of corticosterone levels on begging behavior, immunity and parental provisioning rate in house sparrows. General and Comparative Endocrinology, 2008, 155, 101-108.	1.8	108
23	Social environment affects female and egg testosterone levels in the house sparrow (Passer) Tj ETQq1 1 0.78431	.4 rgBT /O	verlock 10 T
24	Iridescent structurally based coloration of eyespots correlates with mating success in the peacock. Behavioral Ecology, 2007, 18, 1123-1131.	2.2	100
25	Cost of Reproduction and Cost of Parasitism in the Common Lizard, Lacerta vivipara. Oikos, 1996, 76, 121.	2.7	98
26	Impact of host nutritional status on infection dynamics and parasite virulence in a birdâ€malaria system. Journal of Animal Ecology, 2014, 83, 256-265.	2.8	98
27	Quantitative Genetics of Locomotor Speed and Endurance in the Lizard Lacerta vivipara. Physiological Zoology, 1995, 68, 698-720.	1.5	95
28	Antagonistic effects of a Mhc class I allele on malaria-infected house sparrows. Ecology Letters, 2008, 11, 258-265.	6.4	95
29	Plumage dichromatism of birds predicts introduction success in New Zealand. Journal of Animal Ecology, 1998, 67, 263-269.	2.8	92
30	Effect of testosterone on T cell-mediated immunity in two species of mediterranean lacertid lizards. The Journal of Experimental Zoology, 2004, 301A, 411-418.	1.4	91
31	Maternal Parasite Load Increases Sprint Speed and Philopatry in Female Offspring of the Common Lizard. American Naturalist, 1994, 144, 153-164.	2.1	89
32	Intra- and Intersexual Selection for Multiple Traits in the Peacock (Pavo cristatus). Ethology, 2005, 111, 810-820.	1.1	89
33	Reduced immunocompetence of nestlings in replacement clutches of the European magpie (Pica pica). Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1593-1598.	2.6	88
34	Diversifying selection on MHC class I in the house sparrow (<i>Passer domesticus</i>). Molecular Ecology, 2009, 18, 1331-1340.	3.9	88
35	Diversity of Mhc class� and IIB genes in house sparrows (Passer domesticus). Immunogenetics, 2004, 55, 855-865.	2.4	86
36	Phenotypic Plasticity of Growth and Survival in the Common Lizard Lacerta vivipara. Journal of Animal Ecology, 1996, 65, 781.	2.8	85

#	Article	IF	Citations
37	Sexually extravagant males age more rapidly. Ecology Letters, 2011, 14, 1017-1024.	6.4	85
38	Chapter 9. Determinants of Dispersal Behavior: The Common Lizard as a Case Study. , 1994, , 183-206.		82
39	Major histocompatibility alleles associated with local resistance to malaria in a passerine. Evolution; International Journal of Organic Evolution, 2006, 60, 383-9.	2.3	81
40	Do carotenoid-based sexual traits signal the availability of non-pigmentary antioxidants?. Journal of Experimental Biology, 2006, 209, 4414-4419.	1.7	79
41	Plasmodium relictum infection and MHC diversity in the house sparrow (Passer domesticus). Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1264-1272.	2.6	75
42	Effect of repeated exposure to Plasmodium relictum (lineage SGS1) on infection dynamics in domestic canaries. International Journal for Parasitology, 2010, 40, 1447-1453.	3.1	74
43	Urbanization, Trace Metal Pollution, and Malaria Prevalence in the House Sparrow. PLoS ONE, 2013, 8, e53866.	2.5	71
44	Seasonal variation in the relationship between cellular immune response and badge size in male house sparrows (Passer domesticus). Behavioral Ecology and Sociobiology, 1999, 46, 117-122.	1.4	65
45	Immunity, resistance and tolerance in bird–parasite interactions. Parasite Immunology, 2013, 35, 350-361.	1.5	61
46	Predictions of avian Plasmodium expansion under climate change. Scientific Reports, 2013, 3, 1126.	3.3	61
47	Condition-dependent effects of corticosterone on a carotenoid-based begging signal in house sparrows. Hormones and Behavior, 2008, 53, 266-273.	2.1	57
48	Host–parasite coevolution: comparative evidence for covariation of life history traits in primates and oxyurid parasites. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 285-289.	2.6	56
49	Oxidative stress in relation to reproduction, contaminants, gender and age in a long-lived seabird. Oecologia, 2014, 175, 1107-1116.	2.0	55
50	Male sexual attractiveness affects the investment of maternal resources into the eggs in peafowl (Pavo cristatus). Behavioral Ecology and Sociobiology, 2007, 61, 1043-1052.	1.4	53
51	An experimental manipulation of life-history trajectories and resistance to oxidative stress. Evolution; International Journal of Organic Evolution, 2006, 60, 1913-24.	2.3	53
52	Do peahens not prefer peacocks with more elaborate trains?. Animal Behaviour, 2008, 76, e5-e9.	1.9	52
53	The sperm of aging male bustards retards their offspring's development. Nature Communications, 2015, 6, 6146.	12.8	52
54	Infections and cancer: the "fifty shades of immunity―hypothesis. BMC Cancer, 2017, 17, 257.	2.6	51

#	Article	IF	Citations
55	Social Control and Physiological Cost of Cheating in Status Signalling Male House Sparrows (Passer) Tj ETQq1	1 0.784314 1.1	rg&T Overlo
56	Cancer: A disease at the crossroads of tradeâ€offs. Evolutionary Applications, 2017, 10, 215-225.	3.1	46
57	Male health status, signalled by courtship display, reveals ejaculate quality and hatching success in a lekking species. Journal of Animal Ecology, 2010, 79, 843-850.	2.8	45
58	Change in host rejection behavior mediated by the predatory behavior of its brood parasite. Behavioral Ecology, 1999, 10, 275-280.	2.2	43
59	The presence of females modulates the expression of a carotenoid-based sexual signal. Behavioral Ecology and Sociobiology, 2008, 62, 1159-1166.	1.4	43
60	Rapid increase of host defence against brood parasites in a recently parasitized area: the case of village weavers in Hispaniola. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 941-946.	2.6	40
61	An Mhc class I allele associated to the expression of T-dependent immune response in the house sparrow. Immunogenetics, 2005, 57, 782-789.	2.4	40
62	Environmental maternal effects on locomotor performance in the common lizard (Lacerta vivipara). Evolutionary Ecology, 1997, 11, 531-541.	1,2	37
63	Immune Evasion, Immunopathology and the Regulation of the Immune System. Pathogens, 2013, 2, 71-91.	2.8	37
64	Mitochondrial Uncoupling Proteins: New Perspectives for Evolutionary Ecologists. American Naturalist, 2005, 166, 686-699.	2.1	36
65	Environmental stress affects the expression of a carotenoid-based sexual trait in male zebra finches. Journal of Experimental Biology, 2007, 210, 3571-3578.	1.7	36
66	Host density and ectoparasite avoidance in the common lizard (Lacerta vivipara). Oecologia, 1997, 111, 183-188.	2.0	30
67	Early developmental conditions affect stress response in juvenile but not in adult house sparrows (Passer domesticus). General and Comparative Endocrinology, 2009, 160, 30-35.	1.8	30
68	Correlated evolution between host immunity and parasite life histories in primates and oxyurid parasites. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 2481-2484.	2.6	29
69	GENETIC CORRELATION BETWEEN RESISTANCE TO OXIDATIVE STRESS AND REPRODUCTIVE LIFE SPAN IN A BIRD SPECIES. Evolution; International Journal of Organic Evolution, 2010, 64, 852-857.	2.3	29
70	The evolution of obligate interspecific brood parasitism in birds. Behavioral Ecology, 2001, 12, 128-133.	2.2	28
71	Does recognized genetic management in supportive breeding prevent genetic changes in lifeâ€history traits?. Evolutionary Applications, 2014, 7, 521-532.	3.1	28
72	Experimental inhibition of nitric oxide increases Plasmodium relictum (lineage SGS1) parasitaemia. Experimental Parasitology, 2012, 132, 417-423.	1.2	26

#	Article	IF	CITATIONS
73	Can sexual selection theory inform genetic management of captive populations? A review. Evolutionary Applications, 2014, 7, 1120-1133.	3.1	25
74	Testosterone and helping behavior in the azure-winged magpie (Cyanopica cyanus): natural covariation and an experimental test. Behavioral Ecology and Sociobiology, 2003, 55, 103-111.	1.4	24
75	Parasite virulence when the infection reduces the host immune response. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1929-1935.	2.6	24
76	Multiple aspects of plasticity in clutch size vary among populations of a globally distributed songbird. Journal of Animal Ecology, 2014, 83, 876-887.	2.8	23
77	Post-copulatory sexual selection allows females to alleviate the fitness costs incurred when mating with senescing males. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191675.	2.6	23
78	Females tend to prefer genetically similar mates in an island population of house sparrows. BMC Evolutionary Biology, 2014, 14, 47.	3.2	21
79	Repeated Measurements of Blood Parasite Levels Reveal Limited Ability for Host Recovery in the Common Lizard (Lacerta vivipara). Journal of Parasitology, 1995, 81, 825.	0.7	20
80	<i>Mhc</i> polymorphisms fail to explain the heritability of phytohaemagglutinin-induced skin swelling in a wild passerine. Biology Letters, 2009, 5, 784-787.	2.3	19
81	Quantitative genetics of sexual display, ejaculate quality and size in a lekking species. Journal of Animal Ecology, 2013, 82, 399-407.	2.8	19
82	Immunity and the emergence of virulent pathogens. Infection, Genetics and Evolution, 2013, 16, 441-446.	2.3	19
83	Sex-specific transgenerational effects of early developmental conditions in a passerine. Biological Journal of the Linnean Society, 0, 91, 469-474.	1.6	18
84	Epidemiology of <i>Plasmodium relictum </i> Infection in the House Sparrow. Journal of Parasitology, 2014, 100, 59-65.	0.7	17
85	Variation and covariation in infectivity, virulence and immunodepression in the host–parasite association Gammarus pulex – Pomphorhynchus laevis. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 4229-4236.	2.6	16
86	Genetic structure in insular and mainland populations of house sparrows (<i><scp>P</scp>asser) Tj ETQq0 0 0 rg</i>	;BT_6Overlo	ock 10 Tf 50
87	Demographic Responses to Oxidative Stress and Inflammation in the Wandering Albatross (Diomedea) Tj ETQq1	1 0.78431 2.5	4 rgBT /Over
88	Microbes, Parasites and Immune Diseases. , 2016, , 211-223.		15
89	Retaliatory cuckoos and the evolution of host resistance to brood parasites. Animal Behaviour, 1999, 58, 817-824.	1.9	14
90	Aging parasites produce offspring with poor fitness prospects. Biology Letters, 2017, 13, 20160888.	2.3	14

#	Article	IF	CITATIONS
91	Paternal age negatively affects sperm production of the progeny. Ecology Letters, 2021, 24, 719-727.	6.4	14
92	Suppressing an Anti-Inflammatory Cytokine Reveals a Strong Age-Dependent Survival Cost in Mice. PLoS ONE, 2010, 5, e12940.	2.5	14
93	AN EXPERIMENTAL MANIPULATION OF LIFE-HISTORY TRAJECTORIES AND RESISTANCE TO OXIDATIVE STRESS. Evolution; International Journal of Organic Evolution, 2006, 60, 1913.	2.3	13
94	Immune-Mediated Change in the Expression of a Sexual Trait Predicts Offspring Survival in the Wild. PLoS ONE, 2011, 6, e25305.	2.5	13
95	Helminth Interaction with the Host Immune System: Short-Term Benefits and Costs in Relation to the Infectious Environment. American Naturalist, 2016, 188, 253-263.	2.1	13
96	Female and male plumage brightness correlate with nesting failure in azure-winged magpies Cyanopica cyanus. Journal of Avian Biology, 2008, 39, 257-261.	1.2	12
97	Sperm competition accentuates selection on ejaculate attributes. Biology Letters, 2019, 15, 20180889.	2.3	11
98	Age reduces resistance and tolerance in malaria-infected mice. Infection, Genetics and Evolution, 2021, 88, 104698.	2.3	11
99	TERMINAL INVESTMENT INDUCED BY IMMUNE CHALLENGE AND FITNESS TRAITS ASSOCIATED WITH MAJOR HISTOCOMPATIBILITY COMPLEX IN THE HOUSE SPARROW. Evolution; International Journal of Organic Evolution, 2004, 58, 2823.	2.3	10
100	Non-defendable resources affect peafowl lek organization: A male removal experiment. Behavioural Processes, 2007, 74, 64-70.	1.1	10
101	Reaction norms of host immunity, host fitness and parasite performance in a mouse – intestinal nematode interaction. International Journal for Parasitology, 2016, 46, 133-140.	3.1	10
102	Benefits of immune protection versus immunopathology costs: A synthesis from cytokine KO models. Infection, Genetics and Evolution, 2017, 54, 491-495.	2.3	10
103	Age-related response to an acute innate immune challenge in mice: proteomics reveals a telomere maintenance-related cost. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181877.	2.6	10
104	CORRELATIONAL SELECTION ON PRO- AND ANTI-INFLAMMATORY EFFECTORS. Evolution; International Journal of Organic Evolution, 2012, 66, 3615-3623.	2.3	9
105	Food availability and competition do not modulate the costs of Plasmodium infection in dominant male canaries. Experimental Parasitology, 2013, 135, 708-714.	1.2	9
106	Disrupting Immune Regulation Incurs Transient Costs in Male Reproductive Function. PLoS ONE, 2014, 9, e84606.	2.5	9
107	Positive correlation between helpers at nest and nestling immune response in a cooperative breeding bird. Behavioral Ecology and Sociobiology, 2006, 60, 399-404.	1.4	8
108	Quantitative Genetics of the Aging of Reproductive Traits in the Houbara Bustard. PLoS ONE, 2015, 10, e0133140.	2.5	8

#	Article	IF	CITATIONS
109	Development and optimization of a hybridization technique to type the classical class I and class II B genes of the chicken MHC. Immunogenetics, 2019, 71, 647-663.	2.4	8
110	MAJOR HISTOCOMPATIBILITY ALLELES ASSOCIATED WITH LOCAL RESISTANCE TO MALARIA IN A PASSERINE. Evolution; International Journal of Organic Evolution, 2006, 60, 383.	2.3	7
111	Differential proteomics reveals age-dependent liver oxidative costs of innate immune activation in mice. Journal of Proteomics, 2016, 135, 181-190.	2.4	7
112	No evidence for prezygotic postcopulatory avoidance of kin despite high inbreeding depression. Molecular Ecology, 2018, 27, 5252-5262.	3.9	7
113	Why Does COVID-19 Case Fatality Rate Vary Among Countries?. SSRN Electronic Journal, 0, , .	0.4	7
114	Plastic and micro-evolutionary responses of a nematode to the host immune environment. Experimental Parasitology, 2017, 181, 14-22.	1.2	6
115	Microevolutionary response of a gut nematode to intestinal inflammation. International Journal for Parasitology, 2017, 47, 617-623.	3.1	5
116	Parental experience of a risky environment leads to improved offspring growth rate. Journal of Experimental Biology, 2014, 217, 2734-9.	1.7	4
117	Nlrp3 Gene Expression in Circulating Leukocytes Declines During Healthy Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 1045-1049.	3.6	4
118	Disentangling the effect of host genetics and gut microbiota on resistance to an intestinal parasite. International Journal for Parasitology, 2019, 49, 873-883.	3.1	4
119	Increasing helminth infection burden depauperates the diversity of the gut microbiota and alters its composition in mice. Current Research in Parasitology and Vector-borne Diseases, 2022, 2, 100082.	1.9	4
120	Social interactions modulate the virulence of avian malaria infection. International Journal for Parasitology, 2013, 43, 861-867.	3.1	3
121	Early life infection and host senescence. Experimental Gerontology, 2018, 114, 19-26.	2.8	3
122	Early <i>Plasmodium</i> â€induced inflammation does not accelerate aging in mice. Evolutionary Applications, 2019, 12, 314-323.	3.1	3
123	Evolutionary Ecology: Evolution of Parasitism. , 2019, , 304-309.		3
124	Avian Malaria Models of Disease. , 2014, , 1-11.		3
125	Life history adjustments to intestinal inflammation in a gut nematode. Journal of Experimental Biology, 2017, 220, 3724-3732.	1.7	1
126	The macroecology of cancer incidences in humans is associated with large-scale assemblages of endemic infections. Infection, Genetics and Evolution, 2018, 61, 189-196.	2.3	1

#	Article	IF	CITATIONS
127	Enforced monoandry over generations induces a reduction of female investment into reproduction in a promiscuous bird. Evolutionary Applications, 2021, 14, 2773-2783.	3.1	1
128	Some Plant Defense Stimulators can induce IL- $\hat{1}^2$ production in human immune cells in vitro. Toxicology Reports, 2020, 7, 413-420.	3.3	0
129	Immunology of Parasitism. , 2021, , .		0