Tony J C Harris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2777278/publications.pdf

Version: 2024-02-01

47 papers

2,682 citations

³⁶¹⁴¹³
20
h-index

289244 40 g-index

79 all docs

79 docs citations

79 times ranked 2899 citing authors

#	Article	IF	CITATIONS
1	Axis specification: Breaking symmetry with a myosin patch in the egg. Current Biology, 2022, 32, R89-R91.	3.9	O
2	SCAR/WAVE complex recruitment to a supracellular actomyosin cable by myosin activators and a junctional Arf-GEF during <i>Drosophila</i> dorsal closure. Molecular Biology of the Cell, 2022, 33, mbcE22030107.	2.1	4
3	Emergence of a smooth interface from growth of a dendritic network against a mechanosensitive contractile material. ELife, 2021, 10, .	6.0	3
4	The Arf-GEF Steppke promotes F-actin accumulation, cell protrusions and tissue sealing during Drosophila dorsal closure. PLoS ONE, 2020, 15, e0239357.	2.5	3
5	Title is missing!. , 2020, 15, e0239357.		O
6	Title is missing!. , 2020, 15, e0239357.		0
7	Title is missing!. , 2020, 15, e0239357.		O
8	Title is missing!. , 2020, 15, e0239357.		O
9	Apical polarity proteins recruit the RhoGEF Cysts to promote junctional myosin assembly. Journal of Cell Biology, 2019, 218, 3397-3414.	5.2	28
10	Par-1 controls the composition and growth of cortical actin caps during Drosophila embryo cleavage. Journal of Cell Biology, 2019, 218, 4195-4214.	5.2	14
11	Arf-GEF localization and function at myosin-rich adherens junctions via coiled-coil heterodimerization with an adaptor protein. Molecular Biology of the Cell, 2019, 30, 3090-3103.	2.1	5
12	Key roles of Arf small G proteins and biosynthetic trafficking for animal development. Small GTPases, 2019, 10, 403-410.	1.6	15
13	Organizing Complex Tissue Architecture by Pushing and Pulling Cell Contacts. Developmental Cell, 2018, 44, 407-409.	7.0	O
14	Sculpting epithelia with planar polarized actomyosin networks: Principles from Drosophila. Seminars in Cell and Developmental Biology, 2018, 81, 54-61.	5.0	24
15	Dynamics of PAR Proteins Explain the Oscillation and Ratcheting Mechanisms in Dorsal Closure. Biophysical Journal, 2018, 115, 2230-2241.	0.5	13
16	Collision of Expanding Actin Caps with Actomyosin Borders for Cortical Bending and Mitotic Rounding in a Syncytium. Developmental Cell, 2018, 45, 551-564.e4.	7.0	32
17	An Actomyosin-Arf-GEF Negative Feedback Loop for Tissue Elongation under Stress. Current Biology, 2017, 27, 2260-2270.e5.	3.9	37
18	Protein clustering for cell polarity: Par-3 as a paradigm. F1000Research, 2017, 6, 1620.	1.6	29

#	Article	IF	CITATIONS
19	Cadherin Trafficking for Tissue Morphogenesis: Control and Consequences. Traffic, 2016, 17, 1233-1243.	2.7	40
20	The Arf GAP Asap promotes Arf1 function at the Golgi for cleavage furrow biosynthesis in <i>Drosophila</i> . Molecular Biology of the Cell, 2016, 27, 3143-3155.	2.1	14
21	Germ Cell Segregation from the Drosophila Soma Is Controlled by an Inhibitory Threshold Set by the Arf-GEF Steppke. Genetics, 2015, 200, 863-872.	2.9	11
22	Stepping stone: a cytohesin adaptor for membrane cytoskeleton restraint in the syncytial Drosophila embryo. Molecular Biology of the Cell, 2015, 26, 711-725.	2.1	9
23	A Par-1-Par-3-Centrosome Cell Polarity Pathway and Its Tuning for Isotropic Cell Adhesion. Current Biology, 2015, 25, 2701-2708.	3.9	34
24	Polarized E-cadherin endocytosis directs actomyosin remodeling during embryonic wound repair. Journal of Cell Biology, 2015, 210, 801-816.	5.2	69
25	PH Domain-Arf G Protein Interactions Localize the Arf-GEF Steppke for Cleavage Furrow Regulation in Drosophila. PLoS ONE, 2015, 10, e0142562.	2.5	15
26	Epithelial Apicobasal Polarity in the Drosophila Embryo. , 2015, , 167-187.		1
27	Peptide Binding Properties of the Three PDZ Domains of Bazooka (Drosophila Par-3). PLoS ONE, 2014, 9, e86412.	2.5	2
28	Coordinating the cytoskeleton and endocytosis for regulated plasma membrane growth in the earlyDrosophilaembryo. Bioarchitecture, 2014, 4, 68-74.	1.5	14
29	An Arf-GEF Regulates Antagonism between Endocytosis and the Cytoskeleton for Drosophila Blastoderm Development. Current Biology, 2013, 23, 2110-2120.	3.9	36
30	Bazooka inhibits aPKC to limit antagonism of actomyosin networks during amnioserosa apical constriction. Development (Cambridge), 2013, 140, 4719-4729.	2.5	41
31	Adherens Junction Distribution Mechanisms during Cell-Cell Contact Elongation in Drosophila. PLoS ONE, 2013, 8, e79613.	2.5	14
32	Displacement of basolateral Bazooka/PAR-3 by regulated transport and dispersion during epithelial polarization in <i>Drosophila</i> . Molecular Biology of the Cell, 2012, 23, 4465-4471.	2.1	22
33	Assembly of Bazooka polarity landmarks through a multifaceted membrane-association mechanism. Journal of Cell Science, 2012, 125, 1177-1190.	2.0	44
34	Adherens Junction Assembly and Function in the Drosophila Embryo. International Review of Cell and Molecular Biology, 2012, 293, 45-83.	3.2	44
35	Interactions between the PDZ domains of Bazooka (Par-3) and phosphatidic acid: in vitro characterization and role in epithelial development. Molecular Biology of the Cell, 2012, 23, 3743-3753.	2.1	27
36	Live Imaging of Drosophila Embryos: Quantifying Protein Numbers and Dynamics at Subcellular Locations. Methods in Molecular Biology, 2012, 839, 1-17.	0.9	5

#	Article	IF	CITATIONS
37	An Introduction to Adherens Junctions: From Molecular Mechanisms to Tissue Development and Disease. Sub-Cellular Biochemistry, 2012, 60, 1-5.	2.4	15
38	Adherens junctions: from molecules to morphogenesis. Nature Reviews Molecular Cell Biology, 2010, 11, 502-514.	37.0	799
39	The PAR complex regulates pulsed actomyosin contractions during amnioserosa apical constriction in <i>Drosophila</i> . Development (Cambridge), 2010, 137, 1645-1655.	2.5	169
40	A Modifier Screen for Bazooka/PAR-3 Interacting Genes in the Drosophila Embryo Epithelium. PLoS ONE, 2010, 5, e9938.	2.5	24
41	Chapter 3 How the Cytoskeleton Helps Build the Embryonic Body Plan. Current Topics in Developmental Biology, 2009, 89, 55-85.	2.2	52
42	Independent cadherin–catenin and Bazooka clusters interact to assemble adherens junctions. Journal of Cell Biology, 2009, 185, 787-796.	5 . 2	106
43	Control of cell flattening and junctional remodeling during squamous epithelial morphogenesis in <i>Drosophila</i> . Development (Cambridge), 2008, 135, 2227-2238.	2.5	73
44	aPKC Controls Microtubule Organization to Balance Adherens Junction Symmetry and Planar Polarity during Development. Developmental Cell, 2007, 12, 727-738.	7.0	105
45	Decisions, decisions: \hat{l}^2 -catenin chooses between adhesion and transcription. Trends in Cell Biology, 2005, 15, 234-237.	7.9	176
46	The positioning and segregation of apical cues during epithelial polarity establishment in Drosophila. Journal of Cell Biology, 2005, 170, 813-823.	5 . 2	267
47	Adherens junction-dependent and -independent steps in the establishment of epithelial cell polarity in Drosophila. Journal of Cell Biology, 2004, 167, 135-147.	5. 2	247