Xiangdong Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2776750/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultimate dielectric scaling of 2D transistors via van der Waals metal integration. Nano Research, 2022, 15, 1603-1608.	10.4	13
2	Strainâ€Plasmonic Coupled Broadband Photodetector Based on Monolayer MoS ₂ . Small, 2022, 18, e2107104.	10.0	25
3	Controllable Preparation of 2D Vertical van der Waals Heterostructures and Superlattices for Functional Applications. Small, 2022, 18, e2107059.	10.0	15
4	Endoepitaxial growth of monolayer mosaic heterostructures. Nature Nanotechnology, 2022, 17, 493-499.	31.5	58
5	Synthesis of Group VIII Magnetic Transition-Metal-Doped Monolayer MoSe ₂ . ACS Nano, 2022, 16, 10623-10631.	14.6	18
6	Inâ€plane epitaxial growth of 2D CoSeâ€WSe 2 metalâ€semiconductor lateral heterostructures with improved WSe 2 transistors performance. InformaÄnÃ-Materiály, 2021, 3, 222-228.	17.3	21
7	Highly Selective Synthesis of Monolayer or Bilayer WSe ₂ Single Crystals by Pre-annealing the Solid Precursor. Chemistry of Materials, 2021, 33, 1307-1313.	6.7	20
8	High-order superlattices by rolling up van der Waals heterostructures. Nature, 2021, 591, 385-390.	27.8	163
9	Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nature Electronics, 2021, 4, 342-347.	26.0	140
10	Highâ€Resolution Van der Waals Stencil Lithography for 2DÂTransistors. Small, 2021, 17, e2101209.	10.0	13
11	Phaseâ€Selective Synthesis of Ultrathin FeTe Nanoplates by Controllable Fe/Te Atom Ratio in the Growth Atmosphere. Small, 2021, 17, 2101616.	10.0	13
12	Synthesis of Ultrathin 2D Nonlayered αâ€MnSe Nanosheets, MnSe/WS ₂ Heterojunction for Highâ€Performance Photodetectors. Small Structures, 2021, 2, 2100028.	12.0	31
13	Ultrafast growth of large single crystals of monolayer WS2 and WSe2. National Science Review, 2020, 7, 737-744.	9.5	64
14	Vapor phase growth of two-dimensional PdSe2 nanosheets for high-photoresponsivity near-infrared photodetectors. Nano Research, 2020, 13, 2091-2097.	10.4	44
15	General synthesis of two-dimensional van der Waals heterostructure arrays. Nature, 2020, 579, 368-374.	27.8	393
16	van der Waals epitaxial growth of ultrathin metallic NiSe nanosheets on WSe2 as high performance contacts for WSe2 transistors. Nano Research, 2019, 12, 1683-1689.	10.4	31
17	Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science, 2019, 364, 1057-1062.	12.6	475
18	Direct van der Waals epitaxial growth of 1D/2D Sb2Se3/WS2 mixed-dimensional p-n heterojunctions. Nano Research, 2019, 12, 1139-1145.	10.4	63

XIANGDONG YANG

#	Article	IF	CITATIONS
19	High-performance asymmetric electrodes photodiode based on Sb/WSe2 heterostructure. Nano Research, 2019, 12, 339-344.	10.4	32
20	Two-Dimensional Flexible Bilayer Janus Membrane for Advanced Photothermal Water Desalination. ACS Energy Letters, 2018, 3, 1165-1171.	17.4	203
21	Peroxidaseâ€Mimicking Nanozyme with Enhanced Activity and High Stability Based on Metal–Support Interactions. Chemistry - A European Journal, 2018, 24, 409-415.	3.3	67
22	An Ultrathin Flexible 2D Membrane Based on Singleâ€Walled Nanotube–MoS ₂ Hybrid Film for Highâ€Performance Solar Steam Generation. Advanced Functional Materials, 2018, 28, 1704505.	14.9	271
23	Chemical Vapor Deposition Growth of Single Crystalline CoTe ₂ Nanosheets with Tunable Thickness and Electronic Properties. Chemistry of Materials, 2018, 30, 8891-8896.	6.7	51
24	Ultrafine Graphene Nanomesh with Large On/Off Ratio for Highâ€Performance Flexible Biosensors. Advanced Functional Materials, 2017, 27, 1604096.	14.9	111
25	Rational Design of Hierarchical Carbon/Mesoporous Silicon Composite Sponges as High-Performance Flexible Energy Storage Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 22819-22825.	8.0	34
26	Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Research, 2017, 10, 1560-1583.	10.4	96
27	Lanthanideâ€Doped Nanoparticles with Nearâ€Infraredâ€toâ€Nearâ€Infrared Luminescence for Bioimaging. Chinese Journal of Chemistry, 2016, 34, 558-569.	4.9	13
28	Applications of DNA Nanotechnology in Synthesis and Assembly of Inorganic Nanomaterials. Chinese Journal of Chemistry, 2016, 34, 291-298.	4.9	20
29	Perovskite-Type LaSrMnO Electrocatalyst with Uniform Porous Structure for an Efficient Li–O ₂ Battery Cathode. ACS Nano, 2016, 10, 1240-1248.	14.6	98
30	High-Performance Electrochemical Catalysts Based on Three-Dimensional Porous Architecture with Conductive Interconnected Networks. ACS Applied Materials & Interfaces, 2016, 8, 28265-28273.	8.0	22
31	Blown Bubble Assembly of Graphene Oxide Patches for Transparent Electrodes in Carbon–Silicon Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 28330-28336.	8.0	5