
Jonathan M Chase

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/277670/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters, 2011, 14, 19-28.	6.4	1,899
2	Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2351-2363.	4.0	1,161
3	Community assembly: when should history matter?. Oecologia, 2003, 136, 489-498.	2.0	857
4	Drought mediates the importance of stochastic community assembly. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17430-17434.	7.1	819
5	Stochastic Community Assembly Causes Higher Biodiversity in More Productive Environments. Science, 2010, 328, 1388-1391.	12.6	814
6	Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere, 2011, 2, art24.	2.2	698
7	Spatial scale dictates the productivity–biodiversity relationship. Nature, 2002, 416, 427-430.	27.8	686
8	Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science, 2020, 368, 417-420.	12.6	674
9	Trade-offs in community ecology: linking spatial scales and species coexistence. Ecology Letters, 2004, 7, 69-80.	6.4	643
10	Disentangling the Drivers of β Diversity Along Latitudinal and Elevational Gradients. Science, 2011, 333, 1755-1758.	12.6	617
11	The interaction between predation and competition: a review and synthesis. Ecology Letters, 2002, 5, 302-315.	6.4	596
12	Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. Journal of Applied Ecology, 2018, 55, 169-184.	4.0	435
13	The geography of biodiversity change in marine and terrestrial assemblages. Science, 2019, 366, 339-345.	12.6	385
14	Betaâ€diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecology Letters, 2013, 16, 151-157.	6.4	370
15	Addition of multiple limiting resources reduces grassland diversity. Nature, 2016, 537, 93-96.	27.8	355
16	Aquatic eutrophication promotes pathogenic infection in amphibians. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15781-15786.	7.1	296
17	SPECIES TURNOVER AND THE REGULATION OF TROPHIC STRUCTURE. Annual Review of Ecology, Evolution, and Systematics, 1997, 28, 467-494.	6.7	292
18	Invasive Plants Have Scale-Dependent Effects on Diversity by Altering Species-Area Relationships. Science, 2013, 339, 316-318.	12.6	261

#	Article	IF	CITATIONS
19	Scaleâ€dependent effect sizes of ecological drivers on biodiversity: why standardised sampling is not enough. Ecology Letters, 2013, 16, 17-26.	6.4	250
20	Drought-induced mosquito outbreaks in wetlands. Ecology Letters, 2003, 6, 1017-1024.	6.4	223
21	Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature, 2020, 584, 238-243.	27.8	214
22	Embracing scaleâ€dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecology Letters, 2018, 21, 1737-1751.	6.4	204
23	Spatial scale resolves the niche versus neutral theory debate. Journal of Vegetation Science, 2014, 25, 319-322.	2.2	197
24	A processâ€based metacommunity framework linking local and regional scale community ecology. Ecology Letters, 2020, 23, 1314-1329.	6.4	193
25	Inferring local ecological processes amid species pool influences. Trends in Ecology and Evolution, 2012, 27, 600-607.	8.7	188
26	THE EFFECTS OF PRODUCTIVITY, HERBIVORY, AND PLANT SPECIES TURNOVER IN GRASSLAND FOOD WEBS. Ecology, 2000, 81, 2485-2497.	3.2	176
27	Community assembly and the functioning of ecosystems: how metacommunity processes alter ecosystems attributes. Ecology, 2017, 98, 909-919.	3.2	164
28	Are there real differences among aquatic and terrestrial food webs?. Trends in Ecology and Evolution, 2000, 15, 408-412.	8.7	162
29	Species richness change across spatial scales. Oikos, 2019, 128, 1079-1091.	2.7	160
30	Predators temper the relative importance of stochastic processes in the assembly of prey metacommunities. Ecology Letters, 2009, 12, 1210-1218.	6.4	158
31	Biodiversity and ecosystem functioning at local and regional spatial scales. Ecology Letters, 2002, 5, 467-470.	6.4	152
32	Towards a really unified theory for metacommunities. Functional Ecology, 2005, 19, 182-186.	3.6	140
33	Food Web Effects of Prey Size Refugia: Variable Interactions and Alternative Stable Equilibria. American Naturalist, 1999, 154, 559-570.	2.1	135
34	Parasites in the food web: linking amphibian malformations and aquatic eutrophication. Ecology Letters, 2004, 7, 521-526.	6.4	134
35	Connectivity, scale-dependence, and the productivity-diversity relationship. Ecology Letters, 2004, 7, 676-683.	6.4	131
36	Disturbance alters betaâ€diversity but not the relative importance of community assembly mechanisms. Journal of Ecology, 2015, 103, 1291-1299.	4.0	124

#	Article	IF	CITATIONS
37	Interactions Between Mosquito Larvae and Species that Share the Same Trophic Level. Annual Review of Entomology, 2007, 52, 489-507.	11.8	122
38	Stochastic and deterministic drivers of spatial and temporal turnover in breeding bird communities. Global Ecology and Biogeography, 2013, 22, 202-212.	5.8	121
39	The role of habitat connectivity and landscape geometry in experimental zooplankton metacommunities. Oikos, 2002, 96, 433-440.	2.7	118
40	Macroecology to Unite All Life, Large and Small. Trends in Ecology and Evolution, 2018, 33, 731-744.	8.7	118
41	Integrating the underlying structure of stochasticity into community ecology. Ecology, 2020, 101, e02922.	3.2	113
42	Inter-Annual Associations Between Precipitation and Human Incidence of West Nile Virus in the United States. Vector-Borne and Zoonotic Diseases, 2007, 7, 337-343.	1.5	112
43	Abiotic Controls of Trophic Cascades in a Simple Grassland Food Chain. Oikos, 1996, 77, 495.	2.7	103
44	Alternative stable states and regional community structure. Journal of Theoretical Biology, 2004, 227, 359-368.	1.7	102
45	Habitat loss over six decades accelerates regional and local biodiversity loss via changing landscape connectance. Ecology Letters, 2019, 22, 1019-1027.	6.4	99
46	Strong and weak trophic cascades along a productivity gradient. Oikos, 2003, 101, 187-195.	2.7	98
47	Experimental evidence for alternative stable equilibria in a benthic pond food web. Ecology Letters, 2003, 6, 733-741.	6.4	98
48	Integrating community assembly and biodiversity to better understand ecosystem function: the Community Assembly and the Functioning of Ecosystems (<scp>CAFE</scp>) approach. Ecology Letters, 2018, 21, 167-180.	6.4	94
49	Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nature Ecology and Evolution, 2019, 3, 390-399.	7.8	91
50	Spatial scale modulates the inference of metacommunity assembly processes. Ecology, 2019, 100, e02576.	3.2	91
51	To Grow or to Reproduce? The Role of Lifeâ€History Plasticity in Food Web Dynamics. American Naturalist, 1999, 154, 571-586.	2.1	87
52	Measurement of Biodiversity (MoB): A method to separate the scaleâ€dependent effects of species abundance distribution, density, and aggregation on diversity change. Methods in Ecology and Evolution, 2019, 10, 258-269.	5.2	87
53	Biodiversity conservation through the lens of metacommunity ecology. Annals of the New York Academy of Sciences, 2020, 1469, 86-104.	3.8	81
54	THE ROLE OF SIZE-SPECIFIC PREDATION IN THE EVOLUTION AND DIVERSIFICATION OF PREY LIFE HISTORIES. Evolution; International Journal of Organic Evolution, 2002, 56, 877-887.	2.3	78

#	Article	IF	CITATIONS
55	DISTURBANCE, PREDATOR, AND RESOURCE INTERACTIONS ALTER CONTAINER COMMUNITY COMPOSITION. Ecology, 2004, 85, 2088-2093.	3.2	74
56	We need more realistic climate change experiments for understanding ecosystems of the future. Global Change Biology, 2020, 26, 325-327.	9.5	65
57	Lifting the veil: richness measurements fail to detect systematic biodiversity change over three decades. Ecology, 2018, 99, 1316-1326.	3.2	57
58	Plant tolerance and resistance in food webs: community-level predictions and evolutionary implications. Evolutionary Ecology, 2000, 14, 289-314.	1.2	51
59	CENTRAL-PLACE FORAGER EFFECTS ON FOOD WEB DYNAMICS AND SPATIAL PATTERN IN NORTHERN CALIFORNIA MEADOWS. Ecology, 1998, 79, 1236-1245.	3.2	50
60	Beneath the veil: plant growth form influences the strength of species richness–productivity relationships in forests. Global Ecology and Biogeography, 2009, 18, 416-425.	5.8	49
61	A framework for disentangling ecological mechanisms underlying the island species–area relationship. Frontiers of Biogeography, 2019, 11, .	1.8	46
62	Unifying macroecology and macroevolution to answer fundamental questions about biodiversity. Global Ecology and Biogeography, 2019, 28, 1925-1936.	5.8	44
63	Responses of plant diversity to precipitation change are strongest at local spatial scales and in drylands. Nature Communications, 2021, 12, 2489.	12.8	43
64	Habitat isolation moderates the strength of topâ€down control in experimental pond food webs. Ecology, 2010, 91, 637-643.	3.2	40
65	Wetland isolation facilitates larval mosquito density through the reduction of predators. Ecological Entomology, 2009, 34, 741-747.	2.2	38
66	Predatorâ€Dependent Speciesâ€Area Relationships. American Naturalist, 2007, 170, 636-642.	2.1	37
67	The geometry of habitat fragmentation: Effects of species distribution patterns on extinction risk due to habitat conversion. Ecology and Evolution, 2019, 9, 2775-2790.	1.9	37
68	A crossâ€scale assessment of productivity–diversity relationships. Global Ecology and Biogeography, 2020, 29, 1940-1955.	5.8	35
69	Effects of eutrophication and snails on Eurasian watermilfoil (Myriophyllum spicatum) invasion. Biological Invasions, 2006, 8, 1643-1649.	2.4	34
70	Increasing isolation reduces predator:prey species richness ratios in aquatic food webs. Oikos, 2007, 116, 1581-1587.	2.7	34
71	Spatial scaling of extinction rates: Theory and data reveal nonlinearity and a major upscaling and downscaling challenge. Global Ecology and Biogeography, 2018, 27, 2-13.	5.8	34
72	Differential Competitive Interactions and the Included Niche: An Experimental Analysis with Grasshoppers. Oikos, 1996, 76, 103.	2.7	33

#	Article	IF	CITATIONS
73	General statistical scaling laws for stability in ecological systems. Ecology Letters, 2021, 24, 1474-1486.	6.4	32
74	The internal structure of metacommunities. Oikos, 2022, 2022, .	2.7	32
75	Disturbance alters habitat isolation's effect on biodiversity in aquatic microcosms. Oikos, 2006, 114, 360-366.	2.7	31
76	Predators alter the scaling of diversity in prey metacommunities. Oikos, 2012, 121, 1995-2000.	2.7	30
77	mobsim: An <scp>r</scp> package for the simulation and measurement of biodiversity across spatial scales. Methods in Ecology and Evolution, 2018, 9, 1401-1408.	5.2	28
78	Dissecting macroecological and macroevolutionary patterns of forest biodiversity across the Hawaiian archipelago. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16436-16441.	7.1	28
79	A global database for metacommunity ecology, integrating species, traits, environment and space. Scientific Data, 2020, 7, 6.	5.3	28
80	COMMUNITY GENETICS: TOWARD A SYNTHESIS. Ecology, 2003, 84, 580-582.	3.2	26
81	Dispersal stochasticity mediates species richness in source–sink metacommunities. Oikos, 2013, 122, 395-402.	2.7	26
82	Mediterranean marine protected areas have higher biodiversity via increased evenness, not abundance. Journal of Applied Ecology, 2020, 57, 578-589.	4.0	25
83	A synthesis of land use impacts on stream biodiversity across metrics and scales. Ecology, 2021, 102, e03498.	3.2	24
84	Effects of siteâ€selection bias on estimates of biodiversity change. Conservation Biology, 2021, 35, 688-698.	4.7	22
85	Measurement and analysis of interspecific spatial associations as a facet of biodiversity. Ecological Monographs, 2021, 91, e01452.	5.4	22
86	Mechanistic reconciliation of community and invasion ecology. Ecosphere, 2021, 12, e03359.	2.2	21
87	Habitat area affects arthropod communities directly and indirectly through top predators. Ecography, 2007, 30, 359-366.	4.5	20
88	Habitat size modulates the influence of heterogeneity on species richness patterns in a model zooplankton community. Ecology, 2017, 98, 1651-1659.	3.2	19
89	Reducing dispersal limitation via seed addition increases species richness but not aboveâ€ground biomass. Ecology Letters, 2020, 23, 1442-1450.	6.4	19
90	Knowledge sharing for shared success in the decade on ecosystem restoration. Ecological Solutions and Evidence, 2022, 3, e12117.	2.0	18

#	Article	IF	CITATIONS
91	Sampling effects drive the species–area relationship in lake zooplankton. Oikos, 2020, 129, 124-132.	2.7	17
92	InsectChange: a global database of temporal changes in insect and arachnid assemblages. Ecology, 2021, 102, e03354.	3.2	17
93	The use of GEDI canopy structure for explaining variation in tree species richness in natural forests. Environmental Research Letters, 2022, 17, 045003.	5.2	17
94	Accounting for temporal change in multiple biodiversity patterns improves the inference of metacommunity processes. Ecology, 2022, 103, e3683.	3.2	17
95	Integrating local breeding pond, landcover, and climate factors in predicting amphibian distributions. Landscape Ecology, 2012, 27, 1183-1196.	4.2	16
96	Habitat patch size alters the importance of dispersal for species diversity in an experimental freshwater community. Ecology and Evolution, 2017, 7, 5774-5783.	1.9	16
97	Varying Resource Abundances and Competitive Dynamics. American Naturalist, 1996, 147, 649-654.	2.1	15
98	Implications of Food Web Interactions for Restoration of Missouri Ozark Glade Habitats. Restoration Ecology, 2005, 13, 312-317.	2.9	15
99	Synthesis reveals that island species–area relationships emerge from processes beyond passive sampling. Clobal Ecology and Biogeography, 2021, 30, 2119-2131.	5.8	15
100	The Effects of Productivity, Herbivory, and Plant Species Turnover in Grassland Food Webs. Ecology, 2000, 81, 2485.	3.2	15
101	Long-term abundance trends of insect taxa are only weakly correlated. Biology Letters, 2022, 18, 20210554.	2.3	15
102	Global reef fish richness gradients emerge from divergent and scale-dependent component changes. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170947.	2.6	14
103	A multiscale framework for disentangling the roles of evenness, density, and aggregation on diversity gradients. Ecology, 2021, 102, e03233.	3.2	14
104	Response to Comment on "Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances― Science, 2020, 370, .	12.6	14
105	Species loss due to nutrient addition increases with spatial scale in global grasslands. Ecology Letters, 2021, 24, 2100-2112.	6.4	13
106	Using coverageâ€based rarefaction to infer nonâ€random species distributions. Ecosphere, 2021, 12, e03745.	2.2	13
107	More individuals drive the species energy–area relationship in an experimental zooplankton community. Oikos, 2015, 124, 1065-1070.	2.7	12
108	Fear of Parasites: Lone Star Ticks Increase Giving-up Densities in White-Tailed Deer. Israel Journal of Ecology and Evolution, 2010, 56, 313-324.	0.6	11

#	Article	IF	CITATIONS
109	Scaleâ€dependent effects of conspecific negative density dependence and immigration on biodiversity maintenance. Oikos, 2020, 129, 1072-1083.	2.7	10
110	Species–area relationships in the Andaman and Nicobar Islands emerge because rarer species are disproportionately favored on larger islands. Ecology and Evolution, 2020, 10, 7551-7559.	1.9	9
111	OpenNahele: the open Hawaiian forest plot database. Biodiversity Data Journal, 2018, 6, e28406.	0.8	9
112	Increasing climatic decoupling of bird abundances and distributions. Nature Ecology and Evolution, 2022, 6, 1299-1306.	7.8	9
113	Response to Comments on "Disentangling the Drivers of β Diversity Along Latitudinal and Elevational Gradients― Science, 2012, 335, 1573-1573.	12.6	8
114	â€~Bigger data' on scale-dependent effects of invasive species on biodiversity cannot overcome confounded analyses: a comment on Stohlgren & Rejmánek (2014). Biology Letters, 2015, 11, 20150103.	2.3	8
115	Frag SAD : A database of diversity and species abundance distributions from habitat fragments. Ecology, 2019, 100, e02861.	3.2	8
116	Quantifying effort needed to estimate species diversity from citizen science data. Ecosphere, 2022, 13, .	2.2	7
117	Landscape context influences the abundance of amphibians and the strength of their food web interactions in small ponds. Oikos, 2015, 124, 629-638.	2.7	6
118	Historical and Contemporary Factors Govern Global Biodiversity Patterns. PLoS Biology, 2012, 10, e1001294.	5.6	5
119	Understanding plant communities of the future requires filling knowledge gaps. Global Change Biology, 2020, 26, 328-329.	9.5	4
120	Ecological traits underlying interspecific variation in climate matching of birds. Global Ecology and Biogeography, 2022, 31, 1021-1034.	5.8	4
121	Revisiting global trends in freshwater insect biodiversity: A reply. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1501.	6.5	2
122	How Much Lox Is a Grizzly Bear Worth?. PLoS Biology, 2012, 10, e1001304.	5.6	0