Dario Palmieri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2776554/publications.pdf Version: 2024-02-01

DADIO PALMIEDI

#	Article	IF	CITATIONS
1	Mass COVID-19 patient screening using UvsX and UvsY mediated DNA recombination and high throughput parallel sequencing. Scientific Reports, 2022, 12, 4082.	3.3	2
2	In silico study predicts a key role of <scp>RNA</scp> â€binding domains 3 and 4 in <scp>nucleolin–miRNA</scp> interactions. Proteins: Structure, Function and Bioinformatics, 2022, 90, 1837-1850.	2.6	1
3	NCL Inhibition Exerts Antineoplastic Effects against Prostate Cancer Cells by Modulating Oncogenic MicroRNAs. Cancers, 2020, 12, 1861.	3.7	6
4	Tagging enhances histochemical and biochemical detection of Ran Binding Protein 9 in vivo and reveals its interaction with Nucleolin. Scientific Reports, 2020, 10, 7138.	3.3	4
5	RANBP9 as potential therapeutic target in non-small cell lung cancer. Journal of Cancer Metastasis and Treatment, 2020, 2020, .	0.8	1
6	Circulating immune biomarkers as predictors of the response to pembrolizumab and weekly low dose carboplatin and paclitaxel in NSCLC and poor PS: An interim analysis. Oncology Letters, 2019, 17, 1349-1356.	1.8	27
7	Editorial: From "Junk DNA―to Clinically Relevant Tools for Cancer Diagnosis, Staging, and Tailored Therapies: The Incredible Case of Non-Coding RNAs. Frontiers in Oncology, 2019, 9, 389.	2.8	2
8	Association between antibiotic-immunotherapy exposure ratio and outcome in metastatic non small cell lung cancer. Lung Cancer, 2019, 132, 72-78.	2.0	54
9	The CTLH Complex in Cancer Cell Plasticity. Journal of Oncology, 2019, 2019, 1-13.	1.3	20
10	Cancer-Derived Extracellular Vesicle-Associated MicroRNAs in Intercellular Communication: One Cell's Trash Is Another Cell's Treasure. International Journal of Molecular Sciences, 2019, 20, 6109.	4.1	47
11	MicroRNAs for the Diagnosis and Management of Malignant Pleural Mesothelioma: A Literature Review. Frontiers in Oncology, 2018, 8, 650.	2.8	40
12	Genetic ablation of interacting with Spt6 (lws1) causes early embryonic lethality. PLoS ONE, 2018, 13, e0201030.	2.5	9
13	RANBP9 affects cancer cells response to genotoxic stress and its overexpression is associated with worse response to platinum in NSCLC patients. Oncogene, 2018, 37, 6463-6476.	5.9	15
14	Scorpins in the DNA Damage Response. International Journal of Molecular Sciences, 2018, 19, 1794.	4.1	11
15	A novel fully human anti-NCL immunoRNase for triple-negative breast cancer therapy. Oncotarget, 2016, 7, 87016-87030.	1.8	23
16	miR-302b enhances breast cancer cell sensitivity to cisplatin by regulating E2F1 and the cellular DNA damage response. Oncotarget, 2016, 7, 786-797.	1.8	70
17	Ran Binding Protein 9 (RanBP9) is a novel mediator of cellular DNA damage response in lung cancer cells. Oncotarget, 2016, 7, 18371-18383.	1.8	23
18	Gene-expression profiling of collecting duct carcinoma of the kidney Journal of Clinical Oncology, 2016, 34, 540-540.	1.6	0

DARIO PALMIERI

#	Article	IF	CITATIONS
19	Human anti-nucleolin recombinant immunoagent for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9418-9423.	7.1	53
20	miR-15b/16-2 deletion promotes B-cell malignancies. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11636-11641.	7.1	98
21	PATZ1 acts as a tumor suppressor in thyroid cancer via targeting p53-dependent genes involved in EMT and cell migration. Oncotarget, 2015, 6, 5310-5323.	1.8	44
22	Quaking and <i>miR-155</i> interactions in inflammation and leukemogenesis. Oncotarget, 2015, 6, 24599-24610.	1.8	37
23	POZ-, AT-hook-, and zinc finger-containing protein (PATZ) interacts with human oncogene B cell lymphoma 6 (BCL6) and is required for its negative autoregulation Journal of Biological Chemistry, 2014, 289, 14966.	3.4	0
24	<i>Hmga1/Hmga2</i> double knock-out mice display a "superpygmy―phenotype. Biology Open, 2014, 3, 372-378.	1.2	54
25	Protective role of miR-155 in breast cancer through <i>RAD51</i> targeting impairs homologous recombination after irradiation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4536-4541.	7.1	181
26	Tumor Suppressor Role of the <i>CL2/DRO1/CCDC80</i> Gene in Thyroid Carcinogenesis. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 2834-2843.	3.6	33
27	Embryonic defects and growth alteration in mice with homozygous disruption of the <i>Patz1</i> gene. Journal of Cellular Physiology, 2013, 228, 646-653.	4.1	29
28	The impairment of the High Mobility Group A (HMGA) protein function contributes to the anticancer activity of trabectedin. European Journal of Cancer, 2013, 49, 1142-1151.	2.8	31
29	Overview of diagnostic/targeted treatment combinations in personalized medicine for breast cancer patients. Pharmacogenomics and Personalized Medicine, 2013, 7, 1.	0.7	10
30	Cross-talk between MET and EGFR in non-small cell lung cancer involves miR-27a and Sprouty2. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8573-8578.	7.1	105
31	In vivo NCL targeting affects breast cancer aggressiveness through miRNA regulation. Journal of Experimental Medicine, 2013, 210, 951-968.	8.5	121
32	PATZ1 interacts with p53 and regulates expression of p53-target genes enhancing apoptosis or cell survival based on the cellular context. Cell Death and Disease, 2013, 4, e963-e963.	6.3	49
33	cMyc/miR-125b-5p Signalling Determines Sensitivity to Bortezomib in Preclinical Model of Cutaneous T-Cell Lymphomas. PLoS ONE, 2013, 8, e59390.	2.5	46
34	In vivo NCL targeting affects breast cancer aggressiveness through miRNA regulation. Journal of Cell Biology, 2013, 201, i4-i4.	5.2	0
35	PIT1 upregulation by HMGA proteins has a role in pituitary tumorigenesis. Endocrine-Related Cancer, 2012, 19, 123-135.	3.1	34
36	POZ-, AT-hook-, and Zinc Finger-containing Protein (PATZ) Interacts with Human Oncogene B Cell Lymphoma 6 (BCL6) and Is Required for Its Negative Autoregulation. Journal of Biological Chemistry, 2012, 287, 18308-18319.	3.4	16

DARIO PALMIERI

#	Article	IF	CITATIONS
37	Altered MicroRNA Expression Profile in Human Pituitary GH Adenomas: Down-Regulation of miRNA Targeting HMGA1, HMGA2, and E2F1. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E1128-E1138.	3.6	136
38	Oncosuppressive role of p53â€induced miRâ€205 in triple negative breast cancer. Molecular Oncology, 2012, 6, 458-472.	4.6	142
39	miR-130a targets MET and induces TRAIL-sensitivity in NSCLC by downregulating miR-221 and 222. Oncogene, 2012, 31, 634-642.	5.9	181
40	Downregulation of HMGA-targeting microRNAs has a critical role in human pituitary tumorigenesis. Oncogene, 2012, 31, 3857-3865.	5.9	82
41	HMGA proteins promote ATM expression and enhance cancer cell resistance to genotoxic agents. Oncogene, 2011, 30, 3024-3035.	5.9	71
42	Role of PTPRJ genotype in papillary thyroid carcinoma risk. Endocrine-Related Cancer, 2010, 17, 1001-1006.	3.1	25
43	HMGA2: A pituitary tumour subtype-specific oncogene?. Molecular and Cellular Endocrinology, 2010, 326, 19-24.	3.2	58
44	The Eighth Fibronectin Type III Domain of Protein Tyrosine Phosphatase Receptor J Influences the Formation of Protein Complexes and Cell Localization. Journal of Biochemistry, 2009, 145, 377-385.	1.7	15
45	Impairment of the p27kip1 function enhances thyroid carcinogenesis in TRK-T1 transgenic mice. Endocrine-Related Cancer, 2009, 16, 483-490.	3.1	15
46	HMGA Proteins Up-regulate <i>CCNB2</i> Gene in Mouse and Human Pituitary Adenomas. Cancer Research, 2009, 69, 1844-1850.	0.9	107
47	The cAMP-HMGA1-RBP4 system: a novel biochemical pathway for modulating glucose homeostasis. BMC Biology, 2009, 7, 24.	3.8	47
48	Regulation of microRNA expression by HMGA1 proteins. Oncogene, 2009, 28, 1432-1442.	5.9	44
49	Hmga1 null mice are less susceptible to chemically induced skin carcinogenesis. European Journal of Cancer, 2008, 44, 318-325.	2.8	7
50	HMGA1 protein is a novel target of the ATM kinase. European Journal of Cancer, 2008, 44, 2668-2679.	2.8	22
51	The Mia/Cd-rap gene expression is downregulated by the high-mobility group A proteins in mouse pituitary adenomas. Endocrine-Related Cancer, 2007, 14, 875-886.	3.1	11
52	SOM230, A New Somatostatin Analogue, Is Highly Effective in the Therapy of Growth Hormone/Prolactin-Secreting Pituitary Adenomas. Clinical Cancer Research, 2007, 13, 2738-2744.	7.0	39
53	B-RAF mutations are a rare event in pituitary adenomas. Journal of Endocrinological Investigation, 2007, 30, RC1-RC3.	3.3	12
54	HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity. Cancer Cell, 2006, 9, 459-471.	16.8	226