
Jean-Philippe Vit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/27756/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	AAV9-MCT8 Delivery at Juvenile Stage Ameliorates Neurological and Behavioral Deficits in a Mouse Model of MCT8-Deficiency. Thyroid, 2022, 32, 849-859.	4.5	14
2	Sustained chemogenetic activation of locus coeruleus norepinephrine neurons promotes dopaminergic neuron survival in synucleinopathy. PLoS ONE, 2022, 17, e0263074.	2.5	5
3	Poor Corticospinal Motor Neuron Health Is Associated with Increased Symptom Severity in the Acute Phase Following Repetitive Mild TBI and Predicts Early ALS Onset in Genetically Predisposed Rodents. Brain Sciences, 2021, 11, 160.	2.3	7
4	Color and contrast vision in mouse models of aging and Alzheimer's disease using a novel visual-stimuli four-arm maze. Scientific Reports, 2021, 11, 1255.	3.3	13
5	Visual-stimuli Four-arm Maze test to Assess Cognition and Vision in Mice. Bio-protocol, 2021, 11, e4234.	0.4	1
6	Transplantation of Neural Progenitor Cells Expressing Glial Cell Line-Derived Neurotrophic Factor into the Motor Cortex as a Strategy to Treat Amyotrophic Lateral Sclerosis. Stem Cells, 2018, 36, 1122-1131.	3.2	73
7	Oxidative muscles have better mitochondrial homeostasis than glycolytic muscles throughout life and maintain mitochondrial function during aging. Aging, 2018, 10, 3327-3352.	3.1	44
8	Clinical correlates to assist with chronic traumatic encephalopathy diagnosis. Journal of Trauma and Acute Care Surgery, 2017, 82, 1039-1048.	2.1	11
9	Human neural progenitors differentiate into astrocytes and protect motor neurons in aging rats. Experimental Neurology, 2016, 280, 41-49.	4.1	27
10	A model of recurrent concussion that leads to long-term motor deficits, CTE-like tauopathy and exacerbation of an ALS phenotype. Journal of Trauma and Acute Care Surgery, 2016, 81, 1070-1079.	2.1	25
11	Acute Traumatic Brain Injury Does Not Exacerbate Amyotrophic Lateral Sclerosis in the <i>SOD1 </i> ^{C93A} Rat Model. ENeuro, 2015, 2, ENEURO.0059-14.2015.	1.9	9
12	Delayed Disease Onset and Extended Survival in the SOD1 ^{G93A} Rat Model of Amyotrophic Lateral Sclerosis after Suppression of Mutant SOD1 in the Motor Cortex. Journal of Neuroscience, 2014, 34, 15587-15600.	3.6	116
13	Acamprosate attenuates cue-induced reinstatement of nicotine-seeking behavior in rats. Behavioural Pharmacology, 2011, 22, 222-227.	1.7	8
14	Can satellite glial cells be therapeutic targets for pain control?. Neuron Glia Biology, 2010, 6, 63-71.	1.6	146
15	Adenovector GAD65 Gene Delivery into the Rat Trigeminal Ganglion Produces Orofacial Analgesia. Molecular Pain, 2009, 5, 1744-8069-5-42.	2.1	51
16	Gliopathic Pain: When Satellite Glial Cells Go Bad. Neuroscientist, 2009, 15, 450-463.	3.5	165
17	Chronic constriction injury of the infraorbital nerve in the rat using modified syringe needle. Journal of Neuroscience Methods, 2008, 172, 43-47.	2.5	59
18	Silencing the Kir4.1 Potassium Channel Subunit in Satellite Glial Cells of the Rat Trigeminal Ganglion Results in Pain-Like Behavior in the Absence of Nerve Injury. Journal of Neuroscience, 2008, 28, 4161-4171	3.6	162

JEAN-PHILIPPE VIT

#	Article	IF	CITATIONS
19	Evidence for a Role of Connexin 43 in Trigeminal Pain Using RNA Interference In Vivo. Journal of Neurophysiology, 2008, 100, 3064-3073.	1.8	157
20	Adenovirus-mediated Expression of GAD65 into the Trigeminal Ganglion Produces Long-lasting Analgesia. Neurosurgery, 2008, 62, 1427-1428.	1.1	0
21	The analgesic effect of low dose focal irradiation in a mouse model of bone cancer is associated with spinal changes in neuro-mediators of nociception. Pain, 2006, 120, 188-201.	4.2	61
22	Analgesia and hyperalgesia from CRF receptor modulation in the central nervous system of Fischer and Lewis rats. Pain, 2006, 121, 241-260.	4.2	46
23	Satellite glial cells in the trigeminal ganglion as a determinant of orofacial neuropathic pain. Neuron Glia Biology, 2006, 2, 247-257.	1.6	122
24	Role of the ceramide-signaling pathways in ionizing radiation-induced apoptosis. Oncogene, 2003, 22, 8645-8652.	5.9	66
25	Futile Caspase-8 Activation during the Apoptotic Cell Death Induced by DNA Damaging Agents in Human B-Lymphoblasts. Experimental Cell Research, 2001, 269, 2-12.	2.6	11
26	Loss of the Fanconi anemia group C protein activity results in an inability to activate caspase-3 after ionizing radiation. Biochimie, 2000, 82, 51-58.	2.6	14
27	Integration of chicken cytogenetic and genetic maps: 18 new polymorphic markers isolated from BAC and PAC clones. Animal Genetics, 1998, 29, 348-355.	1.7	21