Dinesh S Rao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2775417/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The RNA-binding protein IGF2BP3 is critical for MLL-AF4-mediated leukemogenesis. Leukemia, 2022, 36, 68-79.	7.2	20
2	Concordance of Peripheral Blood and Bone Marrow Next-Generation Sequencing in Hematologic Neoplasms. Advances in Hematology, 2022, 2022, 1-6.	1.0	5
3	15. Interpreting TP53 variants identified by NGS in the setting of complex karyotypes: examples of potential cryptic copy number alterations and copy-neutral loss of heterozygosity. Cancer Genetics, 2021, 252-253, S5-S6.	0.4	0
4	Focused CRISPR-Cas9 genetic screening reveals USO1 as a vulnerability in B-cell acute lymphoblastic leukemia. Scientific Reports, 2021, 11, 13158.	3.3	10
5	NCCN Guidelines Insights: Acute Myeloid Leukemia, Version 2.2021. Journal of the National Comprehensive Cancer Network: JNCCN, 2021, 19, 16-27.	4.9	170
6	The long non-coding RNA CDK6-AS1 overexpression impacts on acute myeloid leukemia differentiation and mitochondrial dynamics. IScience, 2021, 24, 103350.	4.1	6
7	Development of Notch1 Positive T-Lineage Lymphomas or Splenic Marginal Zone Lymphomas with Pan-Hematopoietic or Pro-B Cell Specific Deletion of Trp53 with Distinct Differentially Dysregulated Pathways. Blood, 2021, 138, 2229-2229.	1.4	0
8	Synergism between IGF2BP1 and ETV6-RUNX1 in the Pathogenesis of ETV6-RUNX1 Positive B-Acute Lymphoblastic Leukaemia. Blood, 2021, 138, 3483-3483.	1.4	0
9	Microsized inflammaging protects stem cells. Blood, 2020, 135, 2204-2205.	1.4	0
10	T Cell–Expressed microRNA-155 Reduces Lifespan in a Mouse Model of Age-Related Chronic Inflammation. Journal of Immunology, 2020, 204, 2064-2075.	0.8	18
11	The RNA Binding Protein IGF2BP3 Is Required for MLL-AF4 Mediated Leukemogenesis. Blood, 2020, 136, 21-22.	1.4	1
12	The Long Noncoding RNA BALR2 Controls Novel Transcriptional Circuits Involved in Chemotherapy Sensitivity of Pediatric Acute Myeloid Leukemia (AML) Blasts. Blood, 2019, 134, 2734-2734.	1.4	0
13	Rela Dynamics Regulate Developmental Pacing in Early B Lymphopoiesis. Experimental Hematology, 2018, 64, S81.	0.4	0
14	Nfkappab Systems Regulates Flt3-Mediated Hematopoiesis. Experimental Hematology, 2018, 64, S81-S82.	0.4	0
15	Overview and Compartmentalization of the Immune System. , 2018, , 199-209.e1.		1
16	Wild-type Kras expands and exhausts hematopoietic stem cells. JCI Insight, 2018, 3, .	5.0	13
17	miR-155 promotes FLT3-ITD–induced myeloproliferative disease through inhibition of the interferon response. Blood, 2017, 129, 3074-3086.	1.4	57
18	The Opposing Roles of Let-7c and Mir-125-b2 in Human Hematopoietic Stem Cell Maintenance and Proliferation. Journal of Allergy and Clinical Immunology, 2017, 139, AB12.	2.9	0

#	Article	IF	CITATIONS
19	Does IGF2BP1 (insulin like growth factor 2 binding protein 1) drive ETV6-RUNX1 positive B-acute lymphoblastic leukemia?. European Journal of Cancer, 2017, 72, S99.	2.8	0
20	Regulation of Marginal Zone B-Cell Differentiation by MicroRNA-146a. Frontiers in Immunology, 2017, 7, 670.	4.8	25
21	The IncRNA CASC15 regulates SOX4 expression in RUNX1-rearranged acute leukemia. Molecular Cancer, 2017, 16, 126.	19.2	108
22	Tumor image-derived texture features are associated with CD3 T-cell infiltration status in glioblastoma. Oncotarget, 2017, 8, 101244-101254.	1.8	25
23	miR-146a modulates autoreactive Th17 cell differentiation and regulates organ-specific autoimmunity. Journal of Clinical Investigation, 2017, 127, 3702-3716.	8.2	112
24	Long noncoding RNAs in hematopoietic malignancies. Briefings in Functional Genomics, 2016, 15, 227-238.	2.7	15
25	RNA-binding protein IGF2BP3 targeting of oncogenic transcripts promotes hematopoietic progenitor proliferation. Journal of Clinical Investigation, 2016, 126, 1495-1511.	8.2	128
26	Genome-Wide CRISPR-Cas9 Screen Identifies MicroRNAs That Regulate Myeloid Leukemia Cell Growth. PLoS ONE, 2016, 11, e0153689.	2.5	46
27	Regulation of Marginal Zone B Cell Differentiation By microRNA-146a Via the Numb-Notch Pathway. Blood, 2016, 128, 3701-3701.	1.4	0
28	MiR-155 Promotes FLT3-ITD-Induced Myeloproliferative Disease through Inhibition of Interferon Signaling. Blood, 2016, 128, 2853-2853.	1.4	1
29	Molecular Characterization of Long Non-Coding RNA CASC15 in Leukemogenesis. Blood, 2016, 128, 5103-5103.	1.4	0
30	3203 Deletion of p53 in hematopoietic progenitors leads to Notch1 dependent T-Acute Lymphoblastic Leukemia. European Journal of Cancer, 2015, 51, S649-S650.	2.8	0
31	BALR-6 regulates cell growth and cell survival in B-lymphoblastic leukemia. Molecular Cancer, 2015, 14, 214.	19.2	29
32	LncRNA Expression Discriminates Karyotype and Predicts Survival in B-Lymphoblastic Leukemia. Molecular Cancer Research, 2015, 13, 839-851.	3.4	81
33	MicroRNA-146a modulates B-cell oncogenesis by regulating Egr1. Oncotarget, 2015, 6, 11023-11037.	1.8	39
34	Genome-Wide Crispr-Cas9 Screen Identifies Functionally Relevant Micro-RNAs in FLT3-ITD+ AML. Blood, 2015, 126, 3823-3823.	1.4	0
35	Identification of Novel Mir-34a Targets in a c-Myc Murine Model. Blood, 2015, 126, 4826-4826.	1.4	0
36	Characterizing the Function of an RNA Binding Protein, IGF2BP3, in Hematopoiesis. Blood, 2015, 126, 3664-3664.	1.4	0

#	Article	IF	CITATIONS
37	miRNA dysregulation in cancer: towards a mechanistic understanding. Frontiers in Genetics, 2014, 5, 54.	2.3	110
38	Myeloid Malignancies with Chromosome 5q Deletions Acquire a Dependency on an Intrachromosomal NF-κB Gene Network. Cell Reports, 2014, 8, 1328-1338.	6.4	64
39	Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission. Nature Medicine, 2014, 20, 296-300.	30.7	212
40	miR-155 Promotes T Follicular Helper Cell Accumulation during Chronic, Low-Grade Inflammation. Immunity, 2014, 41, 605-619.	14.3	145
41	Conversion of Danger Signals into Cytokine Signals By Hematopoietic Stem and Progenitor Cells for Regulation of Stress-Induced Hematopoiesis. Blood, 2014, 124, 2916-2916.	1.4	0
42	Broad protection against influenza infection by vectored immunoprophylaxis in mice. Nature Biotechnology, 2013, 31, 647-652.	17.5	121
43	A case of pediatric B-Lymphoblastic leukemia presenting with a t(9;12)(p24;q11.2) involving JAK2 and concomitant MLL rearrangement with apparent insertion at 6q27. Biomarker Research, 2013, 1, 31.	6.8	5
44	MicroRNA-34b promoter hypermethylation induces CREB overexpression and contributes to myeloid transformation. Haematologica, 2013, 98, 602-610.	3.5	42
45	The CD44high Tumorigenic Subsets in Lung Cancer Biospecimens Are Enriched for Low miR-34a Expression. PLoS ONE, 2013, 8, e73195.	2.5	25
46	MicroRNA-146a acts as a guardian of the quality and longevity of hematopoietic stem cells in mice. ELife, 2013, 2, e00537.	6.0	120
47	Role Of Insulin Like Growth Factor mRNA Binding Protein-3 (IGF2BP3) In Mixed Lineage Leukemia (MLL) Positive B-Cell Lymphomas. Blood, 2013, 122, 3816-3816.	1.4	0
48	SQSTM1/p62 Is a Necessary Cofactor In MDS/AML With Deletion Of Mir-146a. Blood, 2013, 122, 747-747.	1.4	0
49	Characterization of lincRNA BALIR-6 in MLL rearranged B-lymphoblastic leukemia. Blood, 2013, 122, 3730-3730.	1.4	0
50	Defining The Role Of Microrna-146a In B Cell Lymphomagenesis. Blood, 2013, 122, 3805-3805.	1.4	0
51	LincRNA Expression Discriminates Cytogenetic Subtypes In B-Lymphoblastic Leukemia and Plays a Functional Role In Leukemia Cell Survival. Blood, 2013, 122, 2570-2570.	1.4	Ο
52	Inhibitory effect of HIV-specific neutralizing IgA on mucosal transmission of HIV in humanized mice. Blood, 2012, 120, 4571-4582.	1.4	74
53	MicroRNAs in B cell development and malignancy. Journal of Hematology and Oncology, 2012, 5, 7.	17.0	69
54	Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature, 2012, 481, 81-84.	27.8	488

#	Article	lF	CITATIONS
55	Oncomir miR-125b regulates hematopoiesis by targeting the gene Lin28A. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4233-4238.	7.1	143
56	MicroRNAs in inflammation and immune responses. Leukemia, 2012, 26, 404-413.	7.2	198
57	microRNA Regulation of Inflammatory Responses. Annual Review of Immunology, 2012, 30, 295-312.	21.8	814
58	Single Cell Proteomics Reveals Novel Cytokine-Producing Function of Hematopoietic Stem and Progenitor Cells. Blood, 2012, 120, 26-26.	1.4	2
59	MicroRNA function in myeloid biology. Blood, 2011, 118, 2960-2969.	1.4	140
60	<i>miR-146a</i> is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. Journal of Experimental Medicine, 2011, 208, 1189-1201.	8.5	780
61	NF-κB dysregulation in microRNA-146a–deficient mice drives the development of myeloid malignancies. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9184-9189.	7.1	342
62	miR-146ais a significant brake on autoimmunity, myeloproliferation, and cancer in mice. Journal of Cell Biology, 2011, 193, i10-i10.	5.2	0
63	MicroRNA-146a Deficiency Leads to Increased Myeloid Cell Proliferation and Activation. Blood, 2011, 118, 2815-2815.	1.4	0
64	MicroRNA-155 Promotes Autoimmune Inflammation by Enhancing Inflammatory T Cell Development. Immunity, 2010, 33, 607-619.	14.3	800
65	MicroRNA-34a Perturbs B Lymphocyte Development by Repressing the Forkhead Box Transcription Factor Foxp1. Immunity, 2010, 33, 48-59.	14.3	219
66	Physiological and pathological roles for microRNAs in the immune system. Nature Reviews Immunology, 2010, 10, 111-122.	22.7	1,391
67	Lentiviral Vector Delivery of Human Interleukin-7 (hIL-7) to Human Immune System (HIS) Mice Expands T Lymphocyte Populations. PLoS ONE, 2010, 5, e12009.	2.5	61
68	MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14235-14240.	7.1	250
69	MicroRNA Regulation of Immune Cell Development and Function. Blood, 2010, 116, SCI-31-SCI-31.	1.4	0
70	Inositol phosphatase SHIP1 is a primary target of miR-155. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7113-7118.	7.1	732
71	Megakaryocytic blast crisis as a presenting manifestation of chronic myeloid leukemia. Leukemia Research, 2008, 32, 1770-1775.	0.8	16
72	MicroRNAs: new regulators of immune cell development and function. Nature Immunology, 2008, 9, 839-845.	14.5	1,043

#	Article	IF	CITATIONS
73	Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. Journal of Experimental Medicine, 2008, 205, 585-594.	8.5	644
74	Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. Journal of Cell Biology, 2008, 180, i15-i15.	5.2	1
75	Small Lymphoid Proliferations in Extranodal Locations. Archives of Pathology and Laboratory Medicine, 2007, 131, 383-396.	2.5	17
76	MicroRNA-155 Promotes Myeloid Proliferation and Is Overexpressed in Acute Myeloid Leukemia Blood, 2007, 110, 715-715.	1.4	0
77	Primary extranodal nasal-type natural killer/T-cell lymphoma of the brain: a case report. Human Pathology, 2006, 37, 769-772.	2.0	46
78	An Inverse Relation Between COX-2 and E-cadherin Expression Correlates With Aggressive Histologic Features in Prostate Cancer. Applied Immunohistochemistry and Molecular Morphology, 2006, 14, 375-383.	1.2	21
79	Computed Tomography Calcium Quantification as a Measure of Atherosclerotic Plaque Morphology and Stability. Investigative Radiology, 2006, 41, 674-680.	6.2	32
80	Cough-Induced Hemiplegic Migraine with Impaired Consciousness in Cystic Fibrosis. Pediatric Pulmonology, 2006, 41, 171-176.	2.0	7
81	Determinants of plaque instability in atherosclerotic vascular disease. Cardiovascular Pathology, 2005, 14, 285-293.	1.6	38
82	HIP1 and HIP1r Stabilize Receptor Tyrosine Kinases and Bind 3-Phosphoinositides via Epsin N-terminal Homology Domains. Journal of Biological Chemistry, 2004, 279, 14294-14306.	3.4	67
83	Huntingtin Interacting Protein 1 mutations lead to abnormal hematopoiesis, spinal defects and cataracts. Human Molecular Genetics, 2004, 13, 851-867.	2.9	32
84	Altered receptor trafficking in Huntingtin Interacting Protein 1-transformed cells. Cancer Cell, 2003, 3, 471-482.	16.8	103
85	Huntingtin-interacting protein 1 is overexpressed in prostate and colon cancer and is critical for cellular survival. Journal of Clinical Investigation, 2002, 110, 351-360.	8.2	78
86	Huntingtin-interacting protein 1 is overexpressed in prostate and colon cancer and is critical for cellular survival. Journal of Clinical Investigation, 2002, 110, 351-360.	8.2	54
87	Huntingtin-interacting protein 1 is overexpressed in prostate and colon cancer and is critical for cellular survival. Journal of Clinical Investigation, 2002, 110, 351-360.	8.2	19
88	Huntingtin Interacting Protein 1 Is a Clathrin Coat Binding Protein Required for Differentiation of late Spermatogenic Progenitors. Molecular and Cellular Biology, 2001, 21, 7796-7806.	2.3	70