Xiaojun He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2774866/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Interconnected carbon nanocapsules with high N/S co-doping as stable and high-capacity potassium-ion battery anode. Journal of Energy Chemistry, 2022, 66, 195-204.	12.9	58
2	Interconnected N/P co-doped carbon nanocage as high capacitance electrode material for energy storage devices. Nano Research, 2022, 15, 4068-4075.	10.4	43
3	Synthesis, modification strategies and applications of coal-based carbon materials. Fuel Processing Technology, 2022, 230, 107203.	7.2	35
4	Synthesis of N/P co-doped monolithic hierarchical porous carbon for zinc-ion hybrid capacitors with boosted energy density in ZnSO4/ZnI2 redox electrolyte. Journal of Power Sources, 2022, 542, 231743.	7.8	19
5	N, P co-doped hierarchical porous carbon from rapeseed cake with enhanced supercapacitance. Renewable Energy, 2021, 170, 188-196.	8.9	91
6	A Selfâ€Healable Polyelectrolyte Binder for Highly Stabilized Sulfur, Silicon, and Silicon Oxides Electrodes. Advanced Functional Materials, 2021, 31, 2104433.	14.9	41
7	Converting CO ₂ into an Oxygenated Alkynyl Carbon Material with High Electrochemical Performance through a Mechanochemical Reaction with CaC ₂ . ACS Sustainable Chemistry and Engineering, 2021, 9, 9221-9229.	6.7	16
8	Foam-like porous carbons with ultrahigh surface area from petroleum pitch and their supercapacitive performance. Chemical Physics Letters, 2021, 783, 139058.	2.6	2
9	Monolithic carbon nanosheets with rich pores for high-capacitance supercapacitor. Journal of Porous Materials, 2020, 27, 487-494.	2.6	6
10	Moss-Covered Rock-like Hybrid Porous Carbons with Enhanced Electrochemical Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 3065-3071.	6.7	44
11	3D hierarchical carbons composed of cross-linked porous carbon nanosheets for supercapacitors. Journal of Power Sources, 2020, 474, 228698.	7.8	23
12	Emerging Metal Single Atoms in Electrocatalysts and Batteries. Advanced Functional Materials, 2020, 30, 2003870.	14.9	38
13	Architecture and Electrochemical Performance of Alkynyl-Linked Naphthyl Carbon Skeleton: Naphyne. ACS Applied Materials & Interfaces, 2020, 12, 33076-33082.	8.0	20
14	3D N,O-Codoped Egg-Box-Like Carbons with Tuned Channels for High Areal Capacitance Supercapacitors. Nano-Micro Letters, 2020, 12, 82.	27.0	78
15	Efficient synthesis of alkynyl carbon materials derived from CaC2 through solvent-free mechanochemical strategy for supercapacitors. SN Applied Sciences, 2019, 1, 1.	2.9	8
16	Crumpled carbon nanonets derived from anthracene oil for high energy density supercapacitor. Journal of Power Sources, 2019, 428, 8-12.	7.8	43
17	From fluorene molecules to ultrathin carbon nanonets with an enhanced charge transfer capability for supercapacitors. Nanoscale, 2019, 11, 6610-6619.	5.6	24
18	Synthesis and Zn(II) modification of hierarchical porous carbon materials from petroleum pitch for effective adsorption of organic dyes. Chemosphere, 2019, 216, 379-386.	8.2	32

Χιαοјυν Ηε

#	Article	IF	CITATIONS
19	Interconnected sheet-like porous carbons from coal tar by a confined soft-template strategy for supercapacitors. Chemical Engineering Journal, 2018, 350, 49-56.	12.7	107
20	Wrinkled porous carbon nanosheets from methylnaphthalene oil for high-performance supercapacitors. Fuel Processing Technology, 2018, 175, 10-16.	7.2	35
21	Direct synthesis of interconnected porous carbon nanosheet/nickel foam composite for high-performance supercapacitors by microwave-assisted heating. Journal of Porous Materials, 2018, 25, 923-933.	2.6	17
22	Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 15954-15960.	10.3	216
23	Honeycomb-like porous carbons synthesized by a soft template strategy for supercapacitors. Materials Letters, 2017, 195, 31-33.	2.6	33
24	Porous carbon nanosheets from coal tar for high-performance supercapacitors. Journal of Power Sources, 2017, 357, 41-46.	7.8	150
25	Synthesis of layered microporous carbons from coal tar by directing, space-confinement and self-sacrificed template strategy for supercapacitors. Electrochimica Acta, 2017, 246, 634-642.	5.2	52
26	From diverse polycyclic aromatic molecules to interconnected graphene nanocapsules for supercapacitors. Microporous and Mesoporous Materials, 2017, 245, 73-81.	4.4	12
27	Synthesis of hollow porous carbon nanospheres from coal tar for adsorption of Direct Black 38 dye. Journal of Porous Materials, 2017, 24, 1289-1293.	2.6	12
28	One-step synthesis of mesoporous carbons from mixed resources by microwave-assisted phosphoric acid activation for supercapacitors. Materials Technology, 2017, 32, 701-705.	3.0	5
29	Ultrathin Nitrogenâ€Enriched Hybrid Carbon Nanosheets for Supercapacitors with Ultrahigh Rate Performance and High Energy Density. ChemElectroChem, 2017, 4, 369-375.	3.4	32
30	ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials. Journal of Power Sources, 2017, 340, 183-191.	7.8	212
31	A layered-template-nanospace-confinement strategy for production of corrugated graphene nanosheets from petroleum pitch for supercapacitors. Chemical Engineering Journal, 2016, 297, 121-127.	12.7	168
32	Synthesis of microporous carbon/graphene composites for high-performance supercapacitors. Diamond and Related Materials, 2016, 66, 119-125.	3.9	24
33	Shell-like hierarchical porous carbons for high-rate performance supercapacitors. Microporous and Mesoporous Materials, 2016, 236, 134-140.	4.4	50
34	Electrocatalytic performances of g-C3N4-LaNiO3 composite as bi-functional catalysts for lithium-oxygen batteries. Scientific Reports, 2016, 6, 24314.	3.3	56
35	A novel hydrothermal method to convert incineration ash into pollucite for the immobilization of a simulant radioactive cesium. Journal of Hazardous Materials, 2016, 306, 220-229.	12.4	66
36	Synthesis of Mesoporous Carbons from Rice Husk for Supercapacitors with High Energy Density in Ionic Liquid Electrolytes. Journal of Nanoscience and Nanotechnology, 2016, 16, 2841-2846.	0.9	6

Χιαοјυν Ηε

#	Article	IF	CITATIONS
37	3D interconnected porous carbons from MOF-5 for supercapacitors. Materials Letters, 2016, 172, 81-84.	2.6	53
38	Removal of organic sulfur compounds from diesel by adsorption on carbon materials. Reviews in Chemical Engineering, 2015, 31, .	4.4	34
39	LiNi1/3Co1/3Mn1/3O2 coated by Al2O3 from urea homogeneous precipitation method: improved Li storage performance and mechanism exploring. Journal of Solid State Electrochemistry, 2015, 19, 1523-1533.	2.5	21
40	Interconnected mesoporous carbon sheet for supercapacitors from low-cost resources. Materials Letters, 2015, 158, 237-240.	2.6	18
41	Synthesis of starch-derived mesoporous carbon for electric double layer capacitor. Chemical Engineering Journal, 2014, 245, 166-172.	12.7	99
42	Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors. Journal of Materials Chemistry A, 2014, 2, 19633-19640.	10.3	169
43	Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density. Journal of Power Sources, 2013, 240, 109-113.	7.8	329
44	Facile preparation of mesoporous carbons for supercapacitors by one-step microwave-assisted ZnCl2 activation. Materials Letters, 2013, 94, 158-160.	2.6	43
45	Rice husk-derived porous carbons with high capacitance by ZnCl2 activation for supercapacitors. Electrochimica Acta, 2013, 105, 635-641.	5.2	254
46	Synthesis of hierarchical porous carbons for supercapacitors from coal tar pitch with nano-Fe2O3 as template and activation agent coupled with KOH activation. Journal of Materials Chemistry A, 2013, 1, 9440.	10.3	162
47	Facile preparation of porous carbons from rice husk by microwave heating for supercapacitors. , 2013, , .		0
48	Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template. Carbon, 2012, 50, 4911-4921.	10.3	256
49	Effect of activation time on the properties of activated carbons prepared by microwave-assisted activation for electric double layer capacitors. Carbon, 2010, 48, 1662-1669.	10.3	126
50	Direct synthesis of porous carbon nanotubes and its performance as conducting material of supercapacitor electrode. Diamond and Related Materials, 2008, 17, 993-998.	3.9	26
51	SynthesisÂof N/P/S Coâ€doped 3D Crossâ€ŀinked Carbon Nanosheets by Double Activation Method for Highâ€performance Supercapacitors. ChemElectroChem, 0, ,	3.4	0