David L Wiest

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2774127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Loss of Ribosomal Protein Paralog Rpl22-like1 Blocks Lymphoid Development without Affecting Protein Synthesis. Journal of Immunology, 2022, 208, 870-880.	0.8	5
2	The ERK2 DBP domain opposes pathogenesis of a JAK2V617F-driven myeloproliferative neoplasm. Blood, 2022, , .	1.4	1
3	IL27 Signaling Serves as an Immunologic Checkpoint for Innate Cytotoxic Cells to Promote Hepatocellular Carcinoma. Cancer Discovery, 2022, 12, 1960-1983.	9.4	14
4	The E protein-TCF1 axis controls Î ³ δTÂcell development and effector fate. Cell Reports, 2021, 34, 108716.	6.4	18
5	Ontogenic timing, TÂcell receptor signal strength, and Notch signaling direct γδTÂcell functional differentiation inÀvivo. Cell Reports, 2021, 35, 109227.	6.4	8
6	Recent advances in understanding the development and function of Î ³ δT cells. F1000Research, 2020, 9, 306.	1.6	6
7	RPL22L1 induction in colorectal cancer is associated with poor prognosis and 5-FU resistance. PLoS ONE, 2019, 14, e0222392.	2.5	19
8	Reply to Chien: Clarification of the effect of ligand on γÎ^TCR repertoire selection. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3607-E3608.	7.1	0
9	Role of a selecting ligand in shaping the murine γδ-TCR repertoire. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1889-1894.	7.1	40
10	Integration of T ell receptor, Notch and cytokine signals programs mouse γδT ell effector differentiation. Immunology and Cell Biology, 2018, 96, 994-1007.	2.3	21
11	ld3 Restricts γδNKT Cell Expansion by Controlling Egr2 and c-Myc Activity. Journal of Immunology, 2018, 201, 1452-1459.	0.8	15
12	Ribosomal Proteins Rpl22 and Rpl22l1 Control Morphogenesis by Regulating Pre-mRNA Splicing. Cell Reports, 2017, 18, 545-556.	6.4	69
13	HEB is required for the specification of fetal IL-17-producing $\hat{I}^{3}\hat{I}^{\prime}$ T cells. Nature Communications, 2017, 8, 2004.	12.8	45
14	Disruption of Thrombocyte and T Lymphocyte Development by a Mutation in <i>ARPC1B</i> . Journal of Immunology, 2017, 199, 4036-4045.	0.8	72
15	The homeoprotein Dlx5 drives murine T-cell lymphomagenesis by directly transactivating Notch and upregulating Akt signaling. Oncotarget, 2017, 8, 14941-14956.	1.8	9
16	Control of Early T Cell Development by Notch and T Cell Receptor Signals. , 2016, , 234-241.		0
17	Multisystem Anomalies in Severe Combined Immunodeficiency with Mutant <i>BCL11B</i> . New England Journal of Medicine, 2016, 375, 2165-2176.	27.0	104
18	Ribosomal Protein Rpl22 Controls the Dissemination of T-cell Lymphoma. Cancer Research, 2016, 76, 3387-3396.	0.9	24

#	Article	IF	CITATIONS
19	The BRCA1-Δ11q Alternative Splice Isoform Bypasses Germline Mutations and Promotes Therapeutic Resistance to PARP Inhibition and Cisplatin. Cancer Research, 2016, 76, 2778-2790.	0.9	208
20	Rpl22 Loss Selectively Impairs αβ T Cell Development by Dysregulating Endoplasmic Reticulum Stress Signaling. Journal of Immunology, 2016, 197, 2280-2289.	0.8	30
21	Mutations in <i>STN1</i> cause Coats plus syndrome and are associated with genomic and telomere defects. Journal of Experimental Medicine, 2016, 213, 1429-1440.	8.5	100
22	Appl1andAppl2are Expendable for Mouse Development But Are Essential for HGF-Induced Akt Activation and Migration in Mouse Embryonic Fibroblasts. Journal of Cellular Physiology, 2016, 231, 1142-1150.	4.1	13
23	Development of γδT Cells, the Special-Force Soldiers of the Immune System. Methods in Molecular Biology, 2016, 1323, 23-32.	0.9	14
24	Using the Zebrafish Model to Study T Cell Development. Methods in Molecular Biology, 2016, 1323, 273-292.	0.9	13
25	Kri1l : a novel gene that links defective ribosome biogenesis to impaired hematopoiesis through excessive autophagy. Science Bulletin, 2015, 60, 1547-1548.	9.0	0
26	Mutagenesis Screen Identifies agtpbp1 and eps15L1 as Essential for T lymphocyte Development in Zebrafish. PLoS ONE, 2015, 10, e0131908.	2.5	14
27	Rpl22 Loss Impairs the Development of B Lymphocytes by Activating a p53-Dependent Checkpoint. Journal of Immunology, 2015, 194, 200-209.	0.8	25
28	Regulatory Roles of Rpl22 in Hematopoiesis: An Old Dog with New Tricks. Critical Reviews in Immunology, 2015, 35, 379-400.	0.5	10
29	Noncanonical Mode of ERK Action Controls Alternative αβ and γδT Cell Lineage Fates. Immunity, 2014, 41, 934-946.	14.3	28
30	Fliâ€1 regulates the <scp>DN</scp> 2 to <scp>DN</scp> 3 thymocyte transition and promotes γδ <scp>T</scp> â€cell commitment by enhancing <scp>TCR</scp> signal strength. European Journal of Immunology, 2014, 44, 2617-2624.	2.9	10
31	The TCR ligand-inducible expression of CD73 marks Î ³ Î [°] lineage commitment and a metastable intermediate in effector specification. Journal of Experimental Medicine, 2014, 211, 329-343.	8.5	75
32	Enforcement of γδ-lineage commitment by the pre–T-cell receptor in precursors with weak γδ-TCR signals. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5658-5663.	7.1	35
33	Origins of γδT Cell Effector Subsets: A Riddle Wrapped in an Enigma. Journal of Immunology, 2014, 193, 4289-4294.	0.8	49
34	Control of Hematopoietic Stem Cell Emergence by Antagonistic Functions of Ribosomal Protein Paralogs. Developmental Cell, 2013, 24, 411-425.	7.0	81
35	The Ribosomal Protein Rpl22 Controls Ribosome Composition by Directly Repressing Expression of Its Own Paralog, Rpl22l1. PLoS Genetics, 2013, 9, e1003708.	3.5	89
36	A Role for Ly108 in the Induction of Promyelocytic Zinc Finger Transcription Factor in Developing Thymocytes. Journal of Immunology, 2013, 190, 2121-2128.	0.8	53

#	Article	IF	CITATIONS
37	Development of promyelocytic leukemia zinc finger-expressing innate CD4 T cells requires stronger T-cell receptor signals than conventional CD4 T cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16264-16269.	7.1	15
38	Inactivation of ribosomal protein L22 promotes transformation by induction of the stemness factor, Lin28B. Blood, 2012, 120, 3764-3773.	1.4	132
39	CD45-deficient severe combined immunodeficiency caused by uniparental disomy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10456-10461.	7.1	39
40	<i>Tcra</i> Enhancer Activation by Inducible Transcription Factors Downstream of Pre-TCR Signaling. Journal of Immunology, 2012, 188, 3278-3293.	0.8	18
41	Developmental Arrest of T Cells in Rpl22-Deficient Mice Is Dependent upon Multiple p53 Effectors. Journal of Immunology, 2011, 187, 664-675.	0.8	32
42	The Ras/MAPK Pathway Is Required for Generation of iNKT Cells. PLoS ONE, 2011, 6, e19890.	2.5	35
43	Appl1 is dispensable for Akt signaling in vivo and mouse Tâ€cell development. Genesis, 2010, 48, 531-539.	1.6	15
44	TCR-mediated ThPOK induction promotes development of mature (CD24â~') γδ thymocytes. EMBO Journal, 2010, 29, 2329-2341.	7.8	46
45	Differential Roles of IL-2–Inducible T Cell Kinase-Mediated TCR Signals in Tissue-Specific Localization and Maintenance of Skin Intraepithelial T Cells. Journal of Immunology, 2010, 184, 6807-6814.	0.8	23
46	Cutting Edge: Intrinsic Programming of Thymic γÎT Cells for Specific Peripheral Tissue Localization. Journal of Immunology, 2010, 185, 7156-7160.	0.8	40
47	Towards a molecular understanding of the differential signals regulating αβ/γδT lineage choice. Seminars in Immunology, 2010, 22, 237-246.	5.6	38
48	Origins of γÎT cells: A forum for opposing perspectives. Seminars in Immunology, 2010, 22, 191-192.	5.6	2
49	Identification of the Last Cog in a Ligand-Independent Signaling Machine?. Journal of Immunology, 2009, 182, 5163-5164.	0.8	0
50	Pre-TCR-Induced β-Catenin Facilitates Traversal through β-Selection. Journal of Immunology, 2009, 182, 751-758.	0.8	26
51	Recurrent chromosomal rearrangements implicate oncogenes contributing to Tâ€cell lymphomagenesis in Lckâ€MyrAkt2 transgenic mice. Genes Chromosomes and Cancer, 2009, 48, 786-794.	2.8	16
52	Marked Induction of the Helix-Loop-Helix Protein Id3 Promotes the γδT Cell Fate and Renders Their Functional Maturation Notch Independent. Immunity, 2009, 31, 565-575.	14.3	136
53	Disruption of Supv3L1 damages the skin and causes sarcopenia, loss of fat, and death. Mammalian Genome, 2009, 20, 92-108.	2.2	20
54	Egr2 Is Required for Bcl-2 Induction during Positive Selection. Journal of Immunology, 2008, 181, 7778-7785.	0.8	35

#	Article	IF	CITATIONS
55	A Novel Recurrent Chromosomal Inversion Implicates the Homeobox Gene <i>Dlx5</i> in T-Cell Lymphomas from Lck-Akt2 Transgenic Mice. Cancer Research, 2008, 68, 1296-1302.	0.9	31
56	Early Growth Response Genes Regulate B Cell Development, Proliferation, and Immune Response. Journal of Immunology, 2008, 181, 4590-4602.	0.8	55
57	Redundant Role for Early Growth Response Transcriptional Regulators in Thymocyte Differentiation and Survival. Journal of Immunology, 2007, 178, 6796-6805.	0.8	47
58	Correction of DNA Protein Kinase Deficiency by Spliceosome-mediated RNA Trans-splicing and Sleeping Beauty Transposon Delivery. Molecular Therapy, 2007, 15, 1273-1279.	8.2	24
59	Constitutive Notch signalling promotes CD4-CD8- thymocyte differentiation in the absence of the pre-TCR complex, by mimicking pre-TCR signals. International Immunology, 2007, 19, 1421-1430.	4.0	28
60	Early Growth Response 1 and NF-ATc1 Act in Concert to Promote Thymocyte Development beyond the β-Selection Checkpoint. Journal of Immunology, 2007, 179, 4694-4703.	0.8	23
61	Tâ^'B+NK+ severe combined immunodeficiency caused by complete deficiency of the CD3ζ subunit of the T-cell antigen receptor complex. Blood, 2007, 109, 3198-3206.	1.4	74
62	Ablation of Ribosomal Protein L22 Selectively Impairs $\hat{I}\pm\hat{I}^2$ T Cell Development by Activation of a p53-Dependent Checkpoint. Immunity, 2007, 26, 759-772.	14.3	170
63	High-Sensitivity Detection and Quantitative Analysis of Native Protein-Protein Interactions and Multiprotein Complexes by Flow Cytometry. Science Signaling, 2007, 2007, pl2.	3.6	47
64	Stage-Specific and Differential Notch Dependency at the αβ and γδT Lineage Bifurcation. Immunity, 2006, 25, 105-116.	14.3	208
65	Recent insights into the signals that control ??/??-lineage fate. Immunological Reviews, 2006, 209, 176-190.	6.0	38
66	Mechanistic basis of pre–T cell receptor–mediated autonomous signaling critical for thymocyte development. Nature Immunology, 2006, 7, 67-75.	14.5	133
67	In Vitro Functional Correction of the Mutation Responsible for Murine Severe Combined Immune Deficiency by Small Fragment Homologous Replacement. Human Gene Therapy, 2006, 17, 158-166.	2.7	18
68	The Role of MAPKs in B Cell Receptor-induced Down-regulation of Egr-1 in Immature B Lymphoma Cells. Journal of Biological Chemistry, 2006, 281, 39806-39818.	3.4	25
69	Enforced Expression of Spi-B Reverses T Lineage Commitment and Blocks β-Selection. Journal of Immunology, 2005, 174, 6184-6194.	0.8	74
70	Attenuation of $\hat{I}^{3}\hat{I}$ TCR Signaling Efficiently Diverts Thymocytes to the \hat{I}^{2} Lineage. Immunity, 2005, 22, 595-606.	14.3	204
71	Subversion of T lineage commitment by PU.1 in a clonal cell line system. Developmental Biology, 2005, 280, 448-466.	2.0	51
72	Low Activation Threshold As a Mechanism for Ligand-Independent Signaling in Pre-T Cells. Journal of Immunology, 2003, 170, 2853-2861.	0.8	53

#	Article	IF	CITATIONS
73	Early Growth Response Transcription Factors Are Required for Development of CD4â^'CD8â^' Thymocytes to the CD4+CD8+ Stage. Journal of Immunology, 2002, 168, 1649-1658.	0.8	85
74	Branching out to gain control: how the pre-TCR is linked to multiple functions. Trends in Immunology, 2000, 21, 637-644.	7.5	105
75	Competitive Displacement of pTα by TCR-α During TCR Assembly Prevents Surface Coexpression of Pre-TCR and αβ TCR. Journal of Immunology, 2000, 165, 5566-5572.	0.8	40
76	ldentification of a novel pre-TCR isoform in which the accessibility of the TCRβ subunit is determined by occupancy of the `missing' V domain of pre-Tα. International Immunology, 2000, 12, 1579-1591.	4.0	4
77	ZAP-70 Protein Promotes Tyrosine Phosphorylation of T Cell Receptor Signaling Motifs (ITAMs) in Immature CD4+8+ Thymocytes with Limiting p56lck. Journal of Experimental Medicine, 1999, 189, 1163-1168.	8.5	26
78	Extracellular Signal–Regulated Kinase (Erk) Activation by the Pre-T Cell Receptor in Developing Thymocytes in Vivo. Journal of Experimental Medicine, 1999, 190, 1647-1656.	8.5	41
79	The connecting peptide domain of pTα dictates weak association of the pre-T cell receptor with the TCR ζ subunit. European Journal of Immunology, 1999, 29, 2187-2196.	2.9	18
80	Regulation of Lineage Commitment Distinct from Positive Selection. Science, 1999, 286, 1149-1153.	12.6	90
81	Control of early thymocyte development by the pre-T cell receptor complex: A receptor without a ligand?. Seminars in Immunology, 1999, 11, 251-262.	5.6	37
82	A Spontaneously Arising Mutation in the DLAARN Motif of Murine ZAP-70 Abrogates Kinase Activity and Arrests Thymocyte Development. Immunity, 1997, 6, 663-671.	14.3	79
83	Subunit Composition of Pre–T Cell Receptor Complexes Expressed by Primary Thymocytes: CD3δIs Physically Associated but Not Functionally Required. Journal of Experimental Medicine, 1997, 186, 1461-1467.	8.5	74
84	TCR Activation of ZAP70 Is Impaired in CD4+CD8+ Thymocytes as a Consequence of Intrathymic Interactions that Diminish Available p56lck. Immunity, 1996, 4, 495-504.	14.3	82