Dennis Claessen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2772634/publications.pdf

Version: 2024-02-01

201674 175258 3,001 54 27 52 h-index citations g-index papers 69 69 69 2803 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nature Reviews Microbiology, 2014, 12, 115-124.	28.6	379
2	A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes and Development, 2003, 17, 1714-1726.	5.9	301
3	Amyloids — a functional coat for microorganisms. Nature Reviews Microbiology, 2005, 3, 333-341.	28.6	264
4	Control of the cell elongation–division cycle by shuttling of PBP1 protein in ⟨i⟩Bacillus subtilis⟨/i⟩. Molecular Microbiology, 2008, 68, 1029-1046.	2.5	198
5	Regulation of Streptomyces development: reach for the sky!. Trends in Microbiology, 2006, 14, 313-319.	7.7	133
6	The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins. Molecular Microbiology, 2004, 53, 433-443.	2.5	132
7	Attachment of <i>Streptomyces coelicolor</i> is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose. Molecular Microbiology, 2009, 73, 1128-1140.	2.5	107
8	Two novel homologous proteins of Streptomyces coelicolor and Streptomyces lividans are involved in the formation of the rodlet layer and mediate attachment to a hydrophobic surface. Molecular Microbiology, 2002, 44, 1483-1492.	2.5	96
9	Morphogenesis of Streptomyces in Submerged Cultures. Advances in Applied Microbiology, 2014, 89, 1-45.	2.4	92
10	Expanding the chemical space for natural products by Aspergillus-Streptomyces co-cultivation and biotransformation. Scientific Reports, 2015, 5, 10868.	3.3	74
11	GlxA is a new structural member of the radical copper oxidase family and is required for glycan deposition at hyphal tips and morphogenesis of <i>Streptomyces lividans</i> . Biochemical Journal, 2015, 469, 433-444.	3.7	65
12	The DyP-type peroxidase DtpA is a Tat-substrate required for GlxA maturation and morphogenesis in <i>Streptomyces</i> . Open Biology, 2016, 6, 150149.	3.6	63
13	Antibiotic production in <i>Streptomyces</i> is organized by a division of labor through terminal genomic differentiation. Science Advances, 2020, 6, eaay5781.	10.3	60
14	The Assembly of Individual Chaplin Peptides from Streptomyces coelicolor into Functional Amyloid Fibrils. PLoS ONE, 2011, 6, e18839.	2.5	55
15	A novel locus for mycelial aggregation forms a gateway to improved Streptomyces cell factories. Microbial Cell Factories, 2015, 14, 44.	4.0	54
16	Stress-induced formation of cell wall-deficient cells in filamentous actinomycetes. Nature Communications, 2018, 9, 5164.	12.8	52
17	Cell Wall Deficiency as a Coping Strategy for Stress. Trends in Microbiology, 2019, 27, 1025-1033.	7.7	51
18	Aggregation of germlings is a major contributing factor towards mycelial heterogeneity of Streptomyces. Scientific Reports, 2016, 6, 27045.	3.3	48

#	Article	IF	CITATIONS
19	NepA is a structural cell wall protein involved in maintenance of spore dormancy in <i>Streptomyces coelicolor</i> . Molecular Microbiology, 2009, 71, 1591-1603.	2.5	42
20	Analysis of two distinct mycelial populations in liquid-grown Streptomyces cultures using a flow cytometry-based proteomics approach. Applied Microbiology and Biotechnology, 2012, 96, 1301-1312.	3.6	42
21	Differentiation and Anaerobiosis in Standing Liquid Cultures of Streptomyces coelicolor. Journal of Bacteriology, 2003, 185, 1455-1458.	2.2	40
22	Understanding Microbial Divisions of Labor. Frontiers in Microbiology, 2016, 7, 2070.	3.5	40
23	Stress-induced adaptive morphogenesis in bacteria. Advances in Microbial Physiology, 2019, 74, 97-141.	2.4	40
24	Aerial hyphae in surface cultures of Streptomyces lividans and Streptomyces coelicolororiginate from viable segments surviving an early programmed cell death event. FEMS Microbiology Letters, 2007, 274, 118-125.	1.8	39
25	Analysis of novel kitasatosporae reveals significant evolutionary changes in conserved developmental genes between Kitasatospora and Streptomyces. Antonie Van Leeuwenhoek, 2014, 106, 365-380.	1.7	34
26	Exploiting amyloid: how and why bacteria use cross- \hat{l}^2 fibrils. Biochemical Society Transactions, 2012, 40, 728-734.	3.4	33
27	The Conserved DNA-Binding Protein WhiA Is Involved in Cell Division in Bacillus subtilis. Journal of Bacteriology, 2013, 195, 5450-5460.	2.2	33
28	SepG coordinates sporulation-specific cell division and nucleoid organization in <i>Streptomyces coelicolor</i> . Open Biology, 2016, 6, 150164.	3.6	30
29	Pivotal roles for Streptomyces cell surface polymers in morphological differentiation, attachment and mycelial architecture. Antonie Van Leeuwenhoek, 2014, 106, 127-139.	1.7	29
30	The Role of Functional Amyloids in Multicellular Growth and Development of Gram-Positive Bacteria. Biomolecules, 2017, 7, 60.	4.0	27
31	Dynamics of Pellet Fragmentation and Aggregation in Liquid-Grown Cultures of Streptomyces lividans. Frontiers in Microbiology, 2018, 9, 943.	3.5	26
32	Teichoic acids anchor distinct cell wall lamellae in an apically growing bacterium. Communications Biology, 2020, 3, 314.	4.4	25
33	Microbial hitchhiking: how <i>Streptomyces</i> spores are transported by motile soil bacteria. ISME Journal, 2021, 15, 2591-2600.	9.8	25
34	Reversible bacteriophage resistance by shedding the bacterial cell wall. Open Biology, 2022, 12, .	3.6	25
35	Chaplins of Streptomyces coelicolor self-assemble into two distinct functional amyloids. Journal of Structural Biology, 2013, 184, 301-309.	2.8	24
36	Production of poly- \hat{l}^2 -1,6-N-acetylglucosamine by MatAB is required for hyphal aggregation and hydrophilic surface adhesion by Streptomyces. Microbial Cell, 2018, 5, 269-279.	3.2	23

#	Article	IF	Citations
37	The propensity of the bacterial rodlin protein RdlB to form amyloid fibrils determines its function in Streptomyces coelicolor. Scientific Reports, 2017, 7, 42867.	3.3	22
38	Multiscale heterogeneity in filamentous microbes. Biotechnology Advances, 2018, 36, 2138-2149.	11.7	22
39	Surface modification using interfacial assembly of the Streptomyces chaplin proteins. Applied Microbiology and Biotechnology, 2014, 98, 4491-4501.	3.6	18
40	SParticle, an algorithm for the analysis of filamentous microorganisms in submerged cultures. Antonie Van Leeuwenhoek, 2018, 111, 171-182.	1.7	18
41	Role for a Lytic Polysaccharide Monooxygenase in Cell Wall Remodeling in Streptomyces coelicolor. MBio, 2022, 13, e0045622.	4.1	16
42	SapB and the rodlins are required for development of Streptomyces coelicolor in high osmolarity media. FEMS Microbiology Letters, 2012, 329, 154-159.	1.8	13
43	Genome Sequence of the Filamentous Actinomycete <i>Kitasatospora viridifaciens</i> Announcements, 2017, 5, .	0.8	12
44	Mutational meltdown of putative microbial altruists in Streptomyces coelicolor colonies. Nature Communications, 2022, 13, 2266.	12.8	10
45	Sorting of Streptomyces Cell Pellets Using a Complex Object Parametric Analyzer and Sorter. Journal of Visualized Experiments, 2014, , e51178.	0.3	8
46	Cell wall deficiency as an escape mechanism from phage infection. Open Biology, 2021, 11, 210199.	3.6	8
47	An Alternative and Conserved Cell Wall Enzyme That Can Substitute for the Lipid II Synthase MurG. MBio, 2021, 12, .	4.1	6
48	Formation of wallâ€less cells in Kitasatospora viridifaciens requires cytoskeletal protein FilP in oxygenâ€limiting conditions. Molecular Microbiology, 2020, 115, 1181-1190.	2.5	5
49	Use of Permanent Wall-Deficient Cells as a System for the Discovery of New-to-Nature Metabolites. Microorganisms, 2020, 8, 1897.	3.6	5
50	A sandwich-culture technique for controlling antibiotic production and morphological development in Streptomyces coelicolor. Journal of Microbiological Methods, 2012, 91, 318-320.	1.6	3
51	Microencapsulation extends mycelial viability of Streptomyces lividans 66 and increases enzyme production. BMC Biotechnology, 2018, 18, 13.	3.3	3
52	Genome rearrangements and megaplasmid loss in the filamentous bacterium Kitasatospora viridifaciens are associated with protoplast formation and regeneration. Antonie Van Leeuwenhoek, 2020, 113, 825-837.	1.7	3
53	Generating Heterokaryotic Cells via Bacterial Cell-Cell Fusion. Microbiology Spectrum, 2022, 10, .	3.0	3
54	Off the wall. ELife, 2014, 3, .	6.0	1