Krzysztof Palczewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2772288/publications.pdf

Version: 2024-02-01

438 papers

31,847 citations

96 h-index 154 g-index

449 all docs 449
docs citations

449 times ranked 16934 citing authors

#	Article	IF	CITATIONS
1	Structural evidence for visual arrestin priming via complexation of phosphoinositols. Structure, 2022, 30, 263-277.e5.	3.3	12
2	A large animal model of <i>RDH5</i> -associated retinopathy recapitulates important features of the human phenotype. Human Molecular Genetics, 2022, 31, 1263-1277.	2.9	4
3	MicroRNA regulation of critical retinal pigment epithelial functions. Trends in Neurosciences, 2022, 45, 78-90.	8.6	15
4	In vivo imaging of the human eye using a 2-photon-excited fluorescence scanning laser ophthalmoscope. Journal of Clinical Investigation, 2022, 132, .	8.2	18
5	Inhibition of ceramide accumulation in AdipoR1â \in "/â \in " mice increases photoreceptor survival and improves vision. JCl Insight, 2022, 7, .	5.0	12
6	Engineered virus-like particles for efficient inÂvivo delivery of therapeutic proteins. Cell, 2022, 185, 250-265.e16.	28.9	251
7	VCP/p97 inhibitor CB-5083 modulates muscle pathology in a mouse model of VCP inclusion body myopathy. Journal of Translational Medicine, 2022, 20, 21.	4.4	6
8	Capturing a rhodopsin receptor signalling cascade across a native membrane. Nature, 2022, 604, 384-390.	27.8	41
9	In vivo base editing rescues cone photoreceptors in a mouse model of early-onset inherited retinal degeneration. Nature Communications, 2022, 13, 1830.	12.8	42
10	Regenerating Skeletal Muscle Compensates for the Impaired Macrophage Functions Leading to Normal Muscle Repair in Retinol Saturase Null Mice. Cells, 2022, 11, 1333.	4.1	3
11	Stabilization of Meta″ Rhodopsin Conformation by a Nanobody. FASEB Journal, 2022, 36, .	0.5	0
12	Two-photon excited fluorescence scanning laser ophthalmoscope for in vivo imaging of the human eye. , 2022, , .		0
13	Retinoids in the visual cycle: role of the retinal G protein-coupled receptor. Journal of Lipid Research, 2021, 62, 100040.	4.2	38
14	Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing. Nature Biomedical Engineering, 2021, 5, 169-178.	22.5	90
15	Pathways and disease-causing alterations in visual chromophore production for vertebrate vision. Journal of Biological Chemistry, 2021, 296, 100072.	3.4	27
16	Formulation and efficacy of ECO/pRHO-ABCA4-SV40 nanoparticles for nonviral gene therapy of Stargardt disease in a mouse model. Journal of Controlled Release, 2021, 330, 329-340.	9.9	15
17	An inducible Cre mouse for studying roles of the RPE in retinal physiology and disease. JCI Insight, 2021, 6, .	5.0	10
18	Peptide Derivatives of Retinylamine Prevent Retinal Degeneration with Minimal Side Effects on Vision in Mice. Bioconjugate Chemistry, 2021, 32, 572-583.	3.6	4

#	Article	IF	CITATIONS
19	A p97/Valosin-Containing Protein Inhibitor Drug CB-5083 Has a Potent but Reversible Off-Target Effect on Phosphodiesterase-6. Journal of Pharmacology and Experimental Therapeutics, 2021, 378, 31-41.	2.5	17
20	Rational Alteration of Pharmacokinetics of Chiral Fluorinated and Deuterated Derivatives of Emixustat for Retinal Therapy. Journal of Medicinal Chemistry, 2021, 64, 8287-8302.	6.4	12
21	Nano-scale resolution of native retinal rod disk membranes reveals differences in lipid composition. Journal of Cell Biology, 2021, 220, .	5.2	23
22	Regulation of Adrenergic, Serotonin, and Dopamine Receptors to Inhibit Diabetic Retinopathy: Monotherapies versus Combination Therapies. Molecular Pharmacology, 2021, 100, 470-479.	2.3	6
23	New focus on regulation of the rod photoreceptor phosphodiesterase. Current Opinion in Structural Biology, 2021, 69, 99-107.	5.7	6
24	Theoretical Study of the Photoisomerization Mechanism of All- <i>Trans</i> -Retinyl Acetate. Journal of Physical Chemistry A, 2021, 125, 8358-8372.	2.5	1
25	Function of mammalian M-cones depends on the level of CRALBP in Mýller cells. Journal of General Physiology, 2021, 153, .	1.9	9
26	Two-photon microperimetry with picosecond pulses. Biomedical Optics Express, 2021, 12, 462.	2.9	8
27	THE LOSS OF INFRARED LIGHT SENSITIVITY OF PHOTORECEPTOR CELLS MEASURED WITH TWO-PHOTON EXCITATION AS AN INDICATOR OF DIABETIC RETINOPATHY. Retina, 2021, 41, 1302-1308.	1.7	9
28	Identification of small-molecule allosteric modulators that act as enhancers/disrupters of rhodopsin oligomerization. Journal of Biological Chemistry, 2021, 297, 101401.	3.4	5
29	Determinants shaping the nanoscale architecture of the mouse rod outer segment. ELife, 2021, 10, .	6.0	25
30	Straightforward Access to Terminally Disubstituted Electronâ€Deficient Alkylidene Cyclopentâ€2â€enâ€4â€ones through Olefination with αâ€Carbonyl and αâ€Cyano Secondary Alkyl Sulfones. European Journal of Organic Chemistry, 2021, 2021, 6725-6736.	2.4	0
31	Non-viral Gene Therapy for Stargardt Disease with ECO/pRHO-ABCA4 Self-Assembled Nanoparticles. Molecular Therapy, 2020, 28, 293-303.	8.2	32
32	Development of chiral fluorinated alkyl derivatives of emixustat as drug candidates for the treatment of retinal degenerative diseases. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127421.	2.2	0
33	Epigenetic hallmarks of age-related macular degeneration are recapitulated in a photosensitive mouse model. Human Molecular Genetics, 2020, 29, 2611-2624.	2.9	10
34	Clinical Application of Infrared-Light Microperimetry in the Assessment of Scotopic-Eye Sensitivity. Translational Vision Science and Technology, 2020, 9, 7.	2.2	9
35	Shedding new light on the generation of the visual chromophore. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19629-19638.	7.1	51
36	Single particle cryoâ€EM of the complex between interphotoreceptor retinoidâ€binding protein and a monoclonal antibody. FASEB Journal, 2020, 34, 13918-13934.	0.5	6

3

#	Article	IF	CITATIONS
37	Noninvasive two-photon optical biopsy of retinal fluorophores. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22532-22543.	7.1	25
38	PAR4 activation involves extracellular loop 3 and transmembrane residue Thr153. Blood, 2020, 136, 2217-2228.	1.4	22
39	PCARE and WASF3 regulate ciliary F-actin assembly that is required for the initiation of photoreceptor outer segment disk formation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9922-9931.	7.1	58
40	Stable Retinoid Analogue Targeted Dual pH-Sensitive Smart Lipid ECO/ <i>pDNA</i> Nanoparticles for Specific Gene Delivery in the Retinal Pigment Epithelium. ACS Applied Bio Materials, 2020, 3, 3078-3086.	4.6	11
41	Melanopsin Carboxy-terminus phosphorylation plasticity and bulk negative charge, not strict site specificity, achieves phototransduction deactivation. PLoS ONE, 2020, 15, e0228121.	2.5	9
42	Homeostatic plasticity in the retina is associated with maintenance of night vision during retinal degenerative disease. ELife, 2020, 9, .	6.0	31
43	Title is missing!. , 2020, 15, e0228121.		0
44	Title is missing!. , 2020, 15, e0228121.		0
45	Title is missing!. , 2020, 15, e0228121.		0
46	Title is missing!. , 2020, 15, e0228121.		0
47	Cryo-EM structure of the native rhodopsin dimer in nanodiscs. Journal of Biological Chemistry, 2019, 294, 14215-14230.	3.4	64
48	Tissue- and Species-Specific Patterns of RNA metabolism in Post-Mortem Mammalian Retina and Retinal Pigment Epithelium. Scientific Reports, 2019, 9, 14821.	3.3	9
49	Photic generation of 11-cis-retinal in bovine retinal pigment epithelium. Journal of Biological Chemistry, 2019, 294, 19137-19154.	3.4	33
50	<i>Z</i> -isomerization of retinoids through combination of monochromatic photoisomerization and metal catalysis. Organic and Biomolecular Chemistry, 2019, 17, 8125-8139.	2.8	8
51	Sensitivity of Mammalian Cone Photoreceptors to Infrared Light. Neuroscience, 2019, 416, 100-108.	2.3	9
52	Retinal Gene Distribution and Functionality Implicated in Inherited Retinal Degenerations Can Reveal Disease-Relevant Pathways for Pharmacologic Intervention. Pharmaceuticals, 2019, 12, 74.	3.8	5
53	Stereospecific modulation of dimeric rhodopsin. FASEB Journal, 2019, 33, 9526-9539.	0.5	6
54	Catalytic synthesis of 9-cis-retinoids: mechanistic insights. Dalton Transactions, 2019, 48, 10581-10595.	3.3	6

#	Article	IF	CITATIONS
55	The selective estrogen receptor modulator raloxifene mitigates the effect of all-trans-retinal toxicity in photoreceptor degeneration. Journal of Biological Chemistry, 2019, 294, 9461-9475.	3.4	11
56	Transducin1, Phototransduction and the Development of Early Diabetic Retinopathy., 2019, 60, 1538.		43
57	Cryo-EM structure of phosphodiesterase 6 reveals insights into the allosteric regulation of type I phosphodiesterases. Science Advances, 2019, 5, eaav4322.	10.3	34
58	A Mixture of U.S. Food and Drug Administration–Approved Monoaminergic Drugs Protects the Retina From Light Damage in Diverse Models of Night Blindness. , 2019, 60, 1442.		11
59	Human red and green cone opsins are O-glycosylated at an N-terminal Ser/Thr–rich domain conserved in vertebrates. Journal of Biological Chemistry, 2019, 294, 8123-8133.	3.4	10
60	Specificity of the chromophore-binding site in human cone opsins. Journal of Biological Chemistry, 2019, 294, 6082-6093.	3.4	11
61	Retinol Saturase Knock-Out Mice are Characterized by Impaired Clearance of Apoptotic Cells and Develop Mild Autoimmunity. Biomolecules, 2019, 9, 737.	4.0	9
62	Apo-Opsin Exists in Equilibrium Between a Predominant Inactive and a Rare Highly Active State. Journal of Neuroscience, 2019, 39, 212-223.	3.6	13
63	$M\tilde{A}^{1}\!\!/\!\!a$ ller glia phagocytose dead photoreceptor cells in a mouse model of retinal degenerative disease. FASEB Journal, 2019, 33, 3680-3692.	0.5	51
64	Conditional deletion of <i>Des1</i> in the mouse retina does not impair the visual cycle in cones. FASEB Journal, 2019, 33, 5782-5792.	0.5	22
65	Noninvasive Two-Photon Microscopy Imaging of Mouse Retina and Retinal Pigment Epithelium. Methods in Molecular Biology, 2019, 1834, 333-343.	0.9	5
66	Two-photon microperimetry: sensitivity of human photoreceptors to infrared light. Biomedical Optics Express, 2019, 10, 4551.	2.9	21
67	Immuno-TEM/STEM in Retinal Research. Methods in Molecular Biology, 2019, 1834, 311-332.	0.9	0
68	Human aging and disease: Lessons from age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2866-2872.	7.1	59
69	Insights into the pathogenesis of dominant retinitis pigmentosa associated with a D477G mutation in RPE65. Human Molecular Genetics, 2018, 27, 2225-2243.	2.9	26
70	Retinal-chitosan Conjugates Effectively Deliver Active Chromophores to Retinal Photoreceptor Cells in Blind Mice and Dogs. Molecular Pharmacology, 2018, 93, 438-452.	2.3	15
71	Increasing the Stability of Recombinant Human Green Cone Pigment. Biochemistry, 2018, 57, 1022-1030.	2.5	7
72	Retinoid isomerase inhibitors impair but do not block mammalian cone photoreceptor function. Journal of General Physiology, 2018, 150, 571-590.	1.9	28

#	Article	IF	CITATIONS
73	Structural biology of 11- <i>cis-</i> retinaldehyde production in the classical visual cycle. Biochemical Journal, 2018, 475, 3171-3188.	3.7	18
74	New GABA modulators protect photoreceptor cells from lightâ€induced degeneration in mouse models. FASEB Journal, 2018, 32, 3289-3300.	0.5	14
75	A novel small molecule chaperone of rod opsin and its potential therapy for retinal degeneration. Nature Communications, 2018, 9, 1976.	12.8	48
76	Targeting G protein-coupled receptor signaling at the G protein level with a selective nanobody inhibitor. Nature Communications, 2018, 9, 1996.	12.8	65
77	A Small Chaperone Improves Folding and Routing of Rhodopsin Mutants Linked to Inherited Blindness. IScience, 2018, 4, 1-19.	4.1	50
78	Exploring a new ligand binding site of G protein-coupled receptors. Chemical Science, 2018, 9, 6480-6489.	7.4	37
79	Protective Effect of a Locked Retinal Chromophore Analog against Light-Induced Retinal Degeneration. Molecular Pharmacology, 2018, 94, 1132-1144.	2.3	15
80	A Combination of G Protein–Coupled Receptor Modulators Protects Photoreceptors from Degeneration. Journal of Pharmacology and Experimental Therapeutics, 2018, 364, 207-220.	2.5	20
81	Two-photon imaging of the mammalian retina with ultrafast pulsing laser. JCI Insight, 2018, 3, .	5.0	24
82	An Expedient Synthesis of CMF-019: (S)-5-Methyl-3-{1-(pentan-3-yl)-2- (thiophen-2-ylmethyl)-1H-benzo[d]imidazole-5-carboxamido}hexanoic Acid, a Potent Apelin Receptor (APJ) Agonist. Medicinal Chemistry, 2018, 14, 688-694.	1.5	10
83	Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor degeneration. Human Molecular Genetics, 2017, 26, ddw387.	2.9	39
84	MicroRNA-processing Enzymes Are Essential for Survival and Function of Mature Retinal Pigmented Epithelial Cells in Mice. Journal of Biological Chemistry, 2017, 292, 3366-3378.	3.4	22
85	Epi-direction detected multimodal imaging of an unstained mouse retina with a Yb-fiber laser. , 2017, 10069, .		0
86	Hydrogen/Deuterium Exchange Mass Spectrometry of Human Green Opsin Reveals a Conserved Pro-Pro Motif in Extracellular Loop 2 of Monostable Visual G Protein-Coupled Receptors. Biochemistry, 2017, 56, 2338-2348.	2.5	8
87	Structure and Spectroscopy of Alkene-Cleaving Dioxygenases Containing an Atypically Coordinated Non-Heme Iron Center. Biochemistry, 2017, 56, 2836-2852.	2.5	23
88	Rational Tuning of Visual Cycle Modulator Pharmacodynamics. Journal of Pharmacology and Experimental Therapeutics, 2017, 362, 131-145.	2.5	19
89	Targeted Multifunctional Lipid ECO Plasmid DNA Nanoparticles as Efficient Non-viral Gene Therapy for Leber's Congenital Amaurosis. Molecular Therapy - Nucleic Acids, 2017, 7, 42-52.	5.1	35
90	Photocyclic behavior of rhodopsin induced by an atypical isomerization mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2608-E2615.	7.1	28

#	Article	IF	CITATIONS
91	Quantitative phosphoproteomics reveals involvement of multiple signaling pathways in early phagocytosis by the retinal pigmented epithelium. Journal of Biological Chemistry, 2017, 292, 19826-19839.	3.4	17
92	Dephosphorylation by protein phosphatase 2A regulates visual pigment regeneration and the dark adaptation of mammalian photoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9675-E9684.	7.1	11
93	Designing Safer Analgesics via \hat{l} /4-Opioid Receptor Pathways. Trends in Pharmacological Sciences, 2017, 38, 1016-1037.	8.7	53
94	Skunkworks project for Big Pharma. Pharmacological Research, 2017, 124, 167-168.	7.1	1
95	Photoreceptor cells produce inflammatory products that contribute to retinal vascular permeability in a mouse model of diabetes. Diabetologia, 2017, 60, 2111-2120.	6.3	63
96	Crowd sourcing difficult problems in protein science < sup>* < /sup>. Protein Science, 2017, 26, 2118-2125.	7.6	1
97	Complex binding pathways determine the regeneration of mammalian green cone opsin with a locked retinal analogue. Journal of Biological Chemistry, 2017, 292, 10983-10997.	3.4	11
98	The role of retinol dehydrogenase 10 in the cone visual cycle. Scientific Reports, 2017, 7, 2390.	3.3	15
99	A G Protein-Coupled Receptor Dimerization Interface in Human Cone Opsins. Biochemistry, 2017, 56, 61-72.	2.5	22
100	Transcriptome profiling of NIH3T3 cell lines expressing opsin and the P23H opsin mutant identifies candidate drugs for the treatment of retinitis pigmentosa. Pharmacological Research, 2017, 115, 1-13.	7.1	7
101	Context-dependent compensation among phosphatidylserine-recognition receptors. Scientific Reports, 2017, 7, 14623.	3.3	23
102	Multimodal nonlinear optical imaging of unstained retinas in the epi-direction with a sub-40 fs Yb-fiber laser. Biomedical Optics Express, 2017, 8, 5228.	2.9	12
103	Towards Treatment of Stargardt Disease: Workshop Organized and Sponsored by the Foundation Fighting Blindness. Translational Vision Science and Technology, 2017, 6, 6.	2.2	44
104	Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With Two-Photon Ophthalmoscopy., 2017, 58, 604.		23
105	Photoreceptor Cells Influence Retinal Vascular Degeneration in Mouse Models of Retinal Degeneration and Diabetes., 2016, 57, 4272.		55
106	Two-Photon Autofluorescence Imaging Reveals Cellular Structures Throughout the Retina of the Living Primate Eye., 2016, 57, 632.		56
107	In Vivo Two-Photon Fluorescence Kinetics of Primate Rods and Cones. , 2016, 57, 647.		33
108	Image registration and averaging of low laser power two-photon fluorescence images of mouse retina. Biomedical Optics Express, 2016, 7, 2671.	2.9	19

#	Article	IF	Citations
109	Safety assessment in macaques of light exposures for functional two-photon ophthalmoscopy in humans. Biomedical Optics Express, 2016, 7, 5148.	2.9	26
110	Mechanistic Studies on the Stereoselectivity of the Serotonin 5â€HT _{1A} Receptor. Angewandte Chemie - International Edition, 2016, 55, 8661-8665.	13.8	27
111	Mechanistic Studies on the Stereoselectivity of the Serotonin 5â€HT _{1A} Receptor. Angewandte Chemie, 2016, 128, 8803-8807.	2.0	2
112	Receptor MER Tyrosine Kinase Proto-oncogene (MERTK) Is Not Required for Transfer of Bis-retinoids to the Retinal Pigmented Epithelium. Journal of Biological Chemistry, 2016, 291, 26937-26949.	3.4	17
113	Retinoids and Retinal Diseases. Annual Review of Vision Science, 2016, 2, 197-234.	4.4	85
114	Conformational Change of Human Checkpoint Kinase 1 (Chk1) Induced by DNA Damage. Journal of Biological Chemistry, 2016, 291, 12951-12959.	3.4	18
115	A small molecule mitigates hearing loss in a mouse model of Usher syndrome III. Nature Chemical Biology, 2016, 12, 444-451.	8.0	43
116	Key Residues for Catalytic Function and Metal Coordination in a Carotenoid Cleavage Dioxygenase. Journal of Biological Chemistry, 2016, 291, 19401-19412.	3.4	25
117	Eyes on systems pharmacology. Pharmacological Research, 2016, 114, 39-41.	7.1	39
118	Dynamic peptides of human TPP1 fulfill diverse functions in telomere maintenance. Nucleic Acids Research, 2016, 44, gkw846.	14.5	10
119	Structure and Function of G-Protein-Coupled Receptor Kinases 1 and 7. Methods in Pharmacology and Toxicology, 2016, , 25-43.	0.2	3
120	The Molecular Mechanism of P2Y ₁ Receptor Activation. Angewandte Chemie, 2016, 128, 10487-10491.	2.0	2
121	The Molecular Mechanism of P2Y ₁ Receptor Activation. Angewandte Chemie - International Edition, 2016, 55, 10331-10335.	13.8	49
122	Transcriptome analysis reveals rod/cone photoreceptor specific signatures across mammalian retinas. Human Molecular Genetics, 2016, 25, ddw268.	2.9	36
123	Synergistically acting agonists and antagonists of G protein–coupled receptors prevent photoreceptor cell degeneration. Science Signaling, 2016, 9, ra74.	3.6	33
124	Structural Insights into the <i>Drosophila melanogaster</i> Retinol Dehydrogenase, a Member of the Short-Chain Dehydrogenase/Reductase Family. Biochemistry, 2016, 55, 6545-6557.	2.5	19
125	Dominant and recessive mutations in rhodopsin activate different cell death pathways. Human Molecular Genetics, 2016, 25, ddw137.	2.9	41
126	Lecithin:Retinol Acyltransferase: A Key Enzyme Involved in the Retinoid (visual) Cycle. Biochemistry, 2016, 55, 3082-3091.	2.5	23

#	Article	IF	Citations
127	An effective thiol-reactive probe for differential scanning fluorimetry with a standard real-time polymerase chain reaction device. Analytical Biochemistry, 2016, 499, 63-65.	2.4	29
128	The Biochemical Basis of Vitamin A ₃ Production in Arthropod Vision. ACS Chemical Biology, 2016, 11, 1049-1057.	3.4	27
129	The impact of microRNA gene regulation on the survival and function of mature cell types in the eye. FASEB Journal, 2016, 30, 23-33.	0.5	39
130	Systems Pharmacology Links GPCRs with Retinal Degenerative Disorders. Annual Review of Pharmacology and Toxicology, 2016, 56, 273-298.	9.4	24
131	The Mechanism of Ligandâ€Induced Activation or Inhibition of μ†and Ϊâ€Opioid Receptors. Angewandte Chemie - International Edition, 2015, 54, 7560-7563.	13.8	47
132	Retinol dehydrogenase 8 and ATPâ€binding cassette transporter 4 modulate dark adaptation of Mâ€cones in mammalian retina. Journal of Physiology, 2015, 593, 4923-4941.	2.9	12
133	Manganese-Enhanced MRI for Preclinical Evaluation of Retinal Degeneration Treatments. , 2015, 56, 4936.		13
134	A High-Throughput Drug Screening Strategy for Detecting Rhodopsin P23H Mutant Rescue and Degradation., 2015, 56, 2553.		17
135	Utilization of Dioxygen by Carotenoid Cleavage Oxygenases. Journal of Biological Chemistry, 2015, 290, 30212-30223.	3.4	48
136	Conditional Ablation of Retinol Dehydrogenase 10 in the Retinal Pigmented Epithelium Causes Delayed Dark Adaption in Mice. Journal of Biological Chemistry, 2015, 290, 27239-27247.	3.4	19
137	Adrenergic and serotonin receptors affect retinal superoxide generation in diabetic mice: relationship to capillary degeneration and permeability. FASEB Journal, 2015, 29, 2194-2204.	0.5	45
138	Animals deficient in C2Orf71, an autosomal recessive retinitis pigmentosa-associated locus, develop severe early-onset retinal degeneration. Human Molecular Genetics, 2015, 24, 2627-2640.	2.9	21
139	Isotopic labeling of mammalian G protein-coupled receptors heterologously expressed in Caenorhabditis elegans. Analytical Biochemistry, 2015, 472, 30-36.	2.4	7
140	Protein misfolding and the pathogenesis of ABCA4-associated retinal degenerations. Human Molecular Genetics, 2015, 24, 3220-3237.	2.9	69
141	Expansion of First-in-Class Drug Candidates That Sequester Toxic All- <i>Trans</i> Light-Induced Retinal Degeneration. Molecular Pharmacology, 2015, 87, 477-491.	2.3	19
142	Improvement in vision: a new goal for treatment of hereditary retinal degenerations. Expert Opinion on Orphan Drugs, 2015, 3, 563-575.	0.8	23
143	Prolonged prevention of retinal degeneration with retinylamine loaded nanoparticles. Biomaterials, 2015, 44, 103-110.	11.4	20
144	Catalytic mechanism of a retinoid isomerase essential for vertebrate vision. Nature Chemical Biology, 2015, 11, 409-415.	8.0	66

#	Article	IF	Citations
145	Crystallization of Proteins from Crude Bovine Rod Outer Segments. Methods in Enzymology, 2015, 557, 439-458.	1.0	8
146	Periscope for noninvasive two-photon imaging of murine retina in vivo. Biomedical Optics Express, 2015, 6, 3352.	2.9	23
147	Semi-automated discrimination of retinal pigmented epithelial cells in two-photon fluorescence images of mouse retinas. Biomedical Optics Express, 2015, 6, 3032.	2.9	2
148	Selfâ€Assembly of a Multifunctional Lipid With Core–Shell Dendrimer DNA Nanoparticles Enhanced Efficient Gene Delivery at Low Charge Ratios into RPE Cells. Macromolecular Bioscience, 2015, 15, 1663-1672.	4.1	30
149	Serum levels of lipid metabolites in ageâ€related macular degeneration. FASEB Journal, 2015, 29, 4579-4588.	0.5	19
150	Di-retinoid-pyridinium-ethanolamine (A2E) Accumulation and the Maintenance of the Visual Cycle Are Independent of Atg7-mediated Autophagy in the Retinal Pigmented Epithelium. Journal of Biological Chemistry, 2015, 290, 29035-29044.	3.4	31
151	Retinylamine Benefits Early Diabetic Retinopathy in Mice. Journal of Biological Chemistry, 2015, 290, 21568-21579.	3.4	44
152	Disruption of Rhodopsin Dimerization with Synthetic Peptides Targeting an Interaction Interface. Journal of Biological Chemistry, 2015, 290, 25728-25744.	3.4	71
153	Advances in understanding the molecular basis of the first steps in color vision. Progress in Retinal and Eye Research, 2015, 49, 46-66.	15.5	39
154	LRAT-specific domain facilitates vitamin A metabolism by domain swapping in HRASLS3. Nature Chemical Biology, 2015, 11, 26-32.	8.0	49
155	Robust Endoplasmic Reticulum-Associated Degradation of Rhodopsin Precedes Retinal Degeneration. Molecular Neurobiology, 2015, 52, 679-695.	4.0	119
156	The G Protein-Coupled Receptor Rhodopsin: A Historical Perspective. Methods in Molecular Biology, 2015, 1271, 3-18.	0.9	16
157	Molecular pharmacodynamics of emixustat in protection against retinal degeneration. Journal of Clinical Investigation, 2015, 125, 2781-2794.	8.2	59
158	R9AP Overexpression Alters Phototransduction Kinetics in iCre75 Mice., 2014, 55, 1339.		16
159	Endogenous Fluorophores Enable Two-Photon Imaging of the Primate Eye. , 2014, 55, 4438.		33
160	Chemistry and Biology of the Initial Steps in Vision: The Friedenwald Lecture., 2014, 55, 6651.		51
161	Analysis of Carotenoid Isomerase Activity in a Prototypical Carotenoid Cleavage Enzyme, Apocarotenoid Oxygenase (ACO). Journal of Biological Chemistry, 2014, 289, 12286-12299.	3.4	27
162	Human infrared vision is triggered by two-photon chromophore isomerization. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5445-54.	7.1	80

#	Article	IF	Citations
163	Multifunctional PEG Retinylamine Conjugate Provides Prolonged Protection against Retinal Degeneration in Mice. Biomacromolecules, 2014, 15, 4570-4578.	5 . 4	10
164	Structural Insights into Activation of the Retinal L-type Ca2+ Channel (Cav1.4) by Ca2+-binding Protein 4 (CaBP4). Journal of Biological Chemistry, 2014, 289, 31262-31273.	3.4	12
165	STRA6 is critical for cellular vitamin A uptake and homeostasis. Human Molecular Genetics, 2014, 23, 5402-5417.	2.9	92
166	Two-photon microscopy reveals early rod photoreceptor cell damage in light-exposed mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1428-37.	7.1	57
167	Identification and Characterization of Novel Inhibitors of Mammalian Aspartyl Aminopeptidase. Molecular Pharmacology, 2014, 86, 231-242.	2.3	11
168	The macular degeneration-linked C1QTNF5 (S163) mutation causes higher-order structural rearrangements. Journal of Structural Biology, 2014, 186, 86-94.	2.8	18
169	Chemistry of the Retinoid (Visual) Cycle. Chemical Reviews, 2014, 114, 194-232.	47.7	285
170	Human Cellular Retinaldehyde-Binding Protein Has Secondary Thermal 9- <i>cis</i> -Retinal Isomerase Activity. Journal of the American Chemical Society, 2014, 136, 137-146.	13.7	15
171	Inherent Instability of the Retinitis Pigmentosa P23H Mutant Opsin. Journal of Biological Chemistry, 2014, 289, 9288-9303.	3.4	48
172	DICER1 is essential for survival of postmitotic rod photoreceptor cells in mice. FASEB Journal, 2014, 28, 3780-3791.	0.5	54
173	Argonaute High-Throughput Sequencing of RNAs Isolated by Cross-Linking Immunoprecipitation Reveals a Snapshot of miRNA Gene Regulation in the Mammalian Retina. Biochemistry, 2014, 53, 5831-5833.	2.5	4
174	Highâ€resolution crystal structures of the photoreceptor glyceraldehyde 3â€phosphate dehydrogenase (<scp>GAPDH</scp>) with three and fourâ€bound <scp>NAD</scp> molecules. Protein Science, 2014, 23, 1629-1639.	7.6	13
175	Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway. Nature Communications, 2014, 5, 4733.	12.8	197
176	Structural approaches to understanding retinal proteins needed for vision. Current Opinion in Cell Biology, 2014, 27, 32-43.	5.4	12
177	Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye. Nature Medicine, 2014, 20, 785-789.	30.7	108
178	Time-Resolved Fluorescence Spectroscopy Measures Clustering and Mobility of a G Protein-Coupled Receptor Opsin in Live Cell Membranes. Journal of the American Chemical Society, 2014, 136, 8342-8349.	13.7	56
179	Expression, purification and structural properties of ABC transporter ABCA4 and its individual domains. Protein Expression and Purification, 2014, 97, 50-60.	1.3	14
180	P23H opsin knock-in mice reveal a novel step in retinal rod disc morphogenesis. Human Molecular Genetics, 2014, 23, 1723-1741.	2.9	99

#	Article	IF	Citations
181	Serial Block Faceâ€Scanning Electron Microscopy: A Method to Study Retinal Degenerative Phenotypes. Current Protocols in Mouse Biology, 2014, 4, 197-204.	1.2	11
182	Retinal degeneration in animal models with a defective visual cycle. Drug Discovery Today: Disease Models, 2013, 10, e163-e172.	1.2	14
183	Crystallization of G Protein-Coupled Receptors. Methods in Cell Biology, 2013, 117, 451-468.	1.1	14
184	Structural basis of carotenoid cleavage: From bacteria to mammals. Archives of Biochemistry and Biophysics, 2013, 539, 203-213.	3.0	119
185	Retinal Pigmented Epithelial Cells Obtained from Human Induced Pluripotent Stem Cells Possess Functional Visual Cycle Enzymes in Vitro and in Vivo. Journal of Biological Chemistry, 2013, 288, 34484-34493.	3.4	73
186	Asymmetry of the rhodopsin dimer in complex with transducin. FASEB Journal, 2013, 27, 1572-1584.	0.5	58
187	Characterization of human β,β-carotene-15,15′-monooxygenase (BCMO1) as a soluble monomeric enzyme. Archives of Biochemistry and Biophysics, 2013, 539, 214-222.	3.0	31
188	From Atomic Structures to Neuronal Functions of G Protein–Coupled Receptors. Annual Review of Neuroscience, 2013, 36, 139-164.	10.7	38
189	The rhodopsin-transducin complex houses two distinct rhodopsin molecules. Journal of Structural Biology, 2013, 182, 164-172.	2.8	41
190	Molecular Organization and ATP-Induced Conformational Changes of ABCA4, the Photoreceptor-Specific ABC Transporter. Structure, 2013, 21, 854-860.	3.3	52
191	Cellular Retinaldehyde Binding Protein—Different Binding Modes and Micro-Solvation Patterns for High-Affinity 9-cis- and 11-cis-Retinal Substrates. Journal of Physical Chemistry B, 2013, 117, 10719-10729.	2.6	5
192	3D imaging and quantitative analysis of small solubilized membrane proteins and their complexes by transmission electron microscopy. Microscopy (Oxford, England), 2013, 62, 95-107.	1.5	21
193	In vivo two-photon imaging of the mouse retina. Biomedical Optics Express, 2013, 4, 1285.	2.9	76
194	Expression of Mammalian G Protein-Coupled Receptors in Caenorhabditis elegans. Methods in Enzymology, 2013, 520, 239-256.	1.0	6
195	Evolutionarily conserved long intergenic non-coding RNAs in the eye. Human Molecular Genetics, 2013, 22, 2992-3002.	2.9	41
196	As Good as Chocolate. Science, 2013, 340, 562-563.	12.6	4
197	QLT091001, a 9-cis-Retinal Analog, Is Well-Tolerated by Retinas of Mice with Impaired Visual Cycles. , 2013, 54, 455.		39
198	Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16586-16591.	7.1	261

#	Article	IF	CITATIONS
199	A Hybrid Structural Approach to Analyze Ligand Binding by the Serotonin Type 4 Receptor (5-HT4). Molecular and Cellular Proteomics, 2013, 12, 1259-1271.	3.8	30
200	Structural and Functional Analysis of the Native Peripherin-ROM1 Complex Isolated from Photoreceptor Cells. Journal of Biological Chemistry, 2013, 288, 36272-36284.	3.4	41
201	Photoreceptor Proteins Initiate Microglial Activation via Toll-like Receptor 4 in Retinal Degeneration Mediated by All-trans-retinal. Journal of Biological Chemistry, 2013, 288, 15326-15341.	3.4	149
202	Photoreceptor phagocytosis is mediated by phosphoinositide signaling. FASEB Journal, 2013, 27, 4585-4595.	0.5	40
203	Two Carotenoid Oxygenases Contribute to Mammalian Provitamin A Metabolism. Journal of Biological Chemistry, 2013, 288, 34081-34096.	3.4	137
204	Autosomal recessive retinitis pigmentosa E150K opsin mice exhibit photoreceptor disorganization. Journal of Clinical Investigation, 2013, 123, 121-137.	8.2	26
205	Systems pharmacology identifies drug targets for Stargardt disease–associated retinal degeneration. Journal of Clinical Investigation, 2013, 123, 5119-5134.	8.2	70
206	Light-Induced Translocation of RGS9-1 and GÎ ² 5L in Mouse Rod Photoreceptors. PLoS ONE, 2013, 8, e58832.	2.5	11
207	STRA6: A gatekeeper of neuronal vitamin A homeostasis. FASEB Journal, 2013, 27, lb83.	0.5	0
208	Structure of RPE65 isomerase in a lipidic matrix reveals roles for phospholipids and iron in catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2747-56.	7.1	58
209	Structural Basis for the Acyltransferase Activity of Lecithin:Retinol Acyltransferase-like Proteins. Journal of Biological Chemistry, 2012, 287, 23790-23807.	3.4	64
210	Lecithin:Retinol Acyltransferase Is Critical for Cellular Uptake of Vitamin A from Serum Retinol-binding Protein. Journal of Biological Chemistry, 2012, 287, 24216-24227.	3.4	82
211	Thematic Minireview Series on Focus on Vision. Journal of Biological Chemistry, 2012, 287, 1610-1611.	3.4	3
212	Mechanism of All-trans-retinal Toxicity with Implications for Stargardt Disease and Age-related Macular Degeneration. Journal of Biological Chemistry, 2012, 287, 5059-5069.	3.4	182
213	Melanopsin Is Highly Resistant to Light and Chemical Bleaching in Vivo. Journal of Biological Chemistry, 2012, 287, 20888-20897.	3.4	47
214	Insights into Substrate Specificity and Metal Activation of Mammalian Tetrahedral Aspartyl Aminopeptidase. Journal of Biological Chemistry, 2012, 287, 13356-13370.	3.4	33
215	Primary amines protect against retinal degeneration in mouse models of retinopathies. Nature Chemical Biology, 2012, 8, 170-178.	8.0	125
216	Substrate-Induced Changes in the Dynamics of Rhodopsin Kinase (G Protein-Coupled Receptor Kinase 1). Biochemistry, 2012, 51, 3404-3411.	2.5	12

#	Article	IF	CITATIONS
217	Lightâ€sensitive coupling of rhodopsin and melanopsin to G _{i/o} and G _q signal transduction in <i>Caenorhabditis elegans</i> . FASEB Journal, 2012, 26, 480-491.	0.5	30
218	Crystal structure of the globular domain of C1QTNF5: Implications for late-onset retinal macular degeneration. Journal of Structural Biology, 2012, 180, 439-446.	2.8	34
219	Post-Translational Modifications of the Serotonin Type 4 Receptor Heterologously Expressed in Mouse Rod Cells. Biochemistry, 2012, 51, 214-224.	2.5	12
220	Imaging of Protein Crystals with Two-Photon Microscopy. Biochemistry, 2012, 51, 1625-1637.	2.5	27
221	Heterologous expression of functional Gâ€proteinâ€coupled receptors in <i>Caenorhabditis elegans</i> FASEB Journal, 2012, 26, 492-502.	0.5	17
222	Key enzymes of the retinoid (visual) cycle in vertebrate retina. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 137-151.	2.4	141
223	A Microparticle/Hydrogel Combination Drug-Delivery System for Sustained Release of Retinoids. , 2012, 53, 6314.		24
224	Chemistry and Biology of Vision. Journal of Biological Chemistry, 2012, 287, 1612-1619.	3.4	238
225	The physiological impact of microRNA gene regulation in the retina. Cellular and Molecular Life Sciences, 2012, 69, 2739-2750.	5.4	53
226	Retinal cone and rod photoreceptor cells exhibit differential susceptibility to lightâ€induced damage. Journal of Neurochemistry, 2012, 121, 146-156.	3.9	38
227	Conformational Dynamics of Activation for the Pentameric Complex of Dimeric G Protein-Coupled Receptor and Heterotrimeric G Protein. Structure, 2012, 20, 826-840.	3.3	63
228	Inflammatory priming predisposes mice to age-related retinal degeneration. Journal of Clinical Investigation, 2012, 122, 2989-3001.	8.2	55
229	G protein-coupled receptorsrecent advances. Acta Biochimica Polonica, 2012, 59, 515-29.	0.5	36
230	Posttranslational Modifications of the Photoreceptor-Specific ABC Transporter ABCA4. Biochemistry, 2011, 50, 6855-6866.	2.5	34
231	Detergents Stabilize the Conformation of Phosphodiesterase 6. Biochemistry, 2011, 50, 9520-9531.	2.5	4
232	Heterogeneous N-Terminal Acylation of Retinal Proteins Results from the Retina's Unusual Lipid Metabolism. Biochemistry, 2011, 50, 3764-3776.	2.5	7
233	Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy. Biomedical Optics Express, 2011, 2, 139.	2.9	87
234	Rhodopsin–transducin heteropentamer: Three-dimensional structure and biochemical characterization. Journal of Structural Biology, 2011, 176, 387-394.	2.8	55

#	Article	IF	Citations
235	Role of membrane integrity on G protein-coupled receptors: Rhodopsin stability and function. Progress in Lipid Research, 2011, 50, 267-277.	11.6	59
236	The Significance of G Protein-Coupled Receptor Crystallography for Drug Discovery. Pharmacological Reviews, 2011, 63, 901-937.	16.0	195
237	Serial sectioning for examination of photoreceptor cell architecture by focused ion beam technology. Journal of Neuroscience Methods, 2011, 198, 70-76.	2.5	13
238	Focus on vision: 3 decades of remarkable contributions to biology and medicine. FASEB Journal, 2011, 25, 439-443.	0.5	3
239	Toll-like Receptor 3 Is Required for Development of Retinopathy Caused by Impaired All-trans-retinal Clearance in Mice. Journal of Biological Chemistry, 2011, 286, 15543-15555.	3.4	56
240	Retinyl Ester Storage Particles (Retinosomes) from the Retinal Pigmented Epithelium Resemble Lipid Droplets in Other Tissues. Journal of Biological Chemistry, 2011, 286, 17248-17258.	3.4	73
241	Probing Mechanisms of Photoreceptor Degeneration in a New Mouse Model of the Common Form of Autosomal Dominant Retinitis Pigmentosa due to P23H Opsin Mutations. Journal of Biological Chemistry, 2011, 286, 10551-10567.	3.4	221
242	Dietary 9- <i>cis</i> - 2 , 2 -Carotene Fails to Rescue Vision in Mouse Models of Leber Congenital Amaurosis. Molecular Pharmacology, 2011, 80, 943-952.	2.3	32
243	Role of Bulk Water in Hydrolysis of the Rhodopsin Chromophore. Journal of Biological Chemistry, 2011, 286, 18930-18937.	3.4	51
244	Sponge Transgenic Mouse Model Reveals Important Roles for the MicroRNA-183 (miR-183)/96/182 Cluster in Postmitotic Photoreceptors of the Retina. Journal of Biological Chemistry, 2011, 286, 31749-31760.	3.4	111
245	Defective photoreceptor phagocytosis in a mouse model of enhanced Sâ€cone syndrome causes progressive retinal degeneration. FASEB Journal, 2011, 25, 3157-3176.	0.5	76
246	A mitochondrial enzyme degrades carotenoids and protects against oxidative stress. FASEB Journal, 2011, 25, 948-959.	0.5	259
247	Complexes between photoactivated rhodopsin and transducin: progress and questions. Biochemical Journal, 2010, 428, 1-10.	3.7	47
248	Membrane-binding and enzymatic properties of RPE65. Progress in Retinal and Eye Research, 2010, 29, 428-442.	15.5	55
249	Conformational Changes in Guanylate Cyclase-Activating Protein 1 Induced by Ca2+ and N-Terminal Fatty Acid Acylation. Structure, 2010, 18, 116-126.	3.3	20
250	The biochemical and structural basis for trans-to-cis isomerization of retinoids in the chemistry of vision. Trends in Biochemical Sciences, 2010, 35, 400-410.	7.5	105
251	Oligomeric forms of G protein-coupled receptors (GPCRs). Trends in Biochemical Sciences, 2010, 35, 595-600.	7.5	88
252	Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes. Nature Medicine, 2010, 16, 1444-1449.	30.7	78

#	Article	IF	CITATIONS
253	Electrostatic Compensation Restores Trafficking of the Autosomal Recessive Retinitis Pigmentosa E150K Opsin Mutant to the Plasma Membrane. Journal of Biological Chemistry, 2010, 285, 29446-29456.	3.4	6
254	Increased adiposity in the retinol saturaseâ€knockout mouse. FASEB Journal, 2010, 24, 1261-1270.	0.5	45
255	Blind Dogs That Can See. JAMA Ophthalmology, 2010, 128, 1483.	2.4	7
256	Importance of Membrane Structural Integrity for RPE65 Retinoid Isomerization Activity. Journal of Biological Chemistry, 2010, 285, 9667-9682.	3.4	57
257	A Functional Kinase Homology Domain Is Essential for the Activity of Photoreceptor Guanylate Cyclase 1. Journal of Biological Chemistry, 2010, 285, 1899-1908.	3.4	21
258	Palmitoylation stabilizes unliganded rod opsin. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8428-8433.	7.1	45
259	GPCR-OKB: the G Protein Coupled Receptor Oligomer Knowledge Base. Bioinformatics, 2010, 26, 1804-1805.	4.1	74
260	An Acyl-covalent Enzyme Intermediate of Lecithin:Retinol Acyltransferase*. Journal of Biological Chemistry, 2010, 285, 29217-29222.	3.4	23
261	Phagocytosis of Retinal Rod and Cone Photoreceptors. Physiology, 2010, 25, 8-15.	3.1	339
262	Conformational Changes in the G Protein-Coupled Receptor Rhodopsin Revealed by Histidine Hydrogenâ^'Deuterium Exchange. Biochemistry, 2010, 49, 9425-9427.	2.5	24
263	Visualizing Water Molecules in Transmembrane Proteins Using Radiolytic Labeling Methods. Biochemistry, 2010, 49, 827-834.	2.5	44
264	Structural Characterization of the Rod cGMP Phosphodiesterase 6. Journal of Molecular Biology, 2010, 401, 363-373.	4.2	24
265	Retinoids for treatment of retinal diseases. Trends in Pharmacological Sciences, 2010, 31, 284-295.	8.7	110
266	The ATP-Binding Cassette Transporter ABCA4: Structural and Functional Properties and Role in Retinal Disease. Advances in Experimental Medicine and Biology, 2010, 703, 105-125.	1.6	151
267	Molecular Biology and Analytical Chemistry Methods Used to Probe the Retinoid Cycle. Methods in Molecular Biology, 2010, 652, 229-245.	0.9	13
268	Visualization of Retinoid Storage and Trafficking by Two-Photon Microscopy. Methods in Molecular Biology, 2010, 652, 247-261.	0.9	14
269	Effects of Long-Term Administration of 9- <i>cis</i> -Retinyl Acetate on Visual Function in Mice., 2009, 50, 322.		25
270	Evaluation of 9-cis-Retinyl Acetate Therapy inRpe65â^'/â^'Mice., 2009, 50, 4368.		42

#	Article	IF	CITATIONS
271	Isolation and functional characterization of a stable complex between photoactivated rhodopsin and the G protein, transducin. FASEB Journal, 2009, 23, 371-381.	0.5	27
272	Structural waters define a functional channel mediating activation of the GPCR, rhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14367-14372.	7.1	181
273	Loss of cone photoreceptors caused by chromophore depletion is partially prevented by the artificial chromophore pro-drug, 9-cis-retinyl acetate. Human Molecular Genetics, 2009, 18, 2277-2287.	2.9	77
274	Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8555-8560.	7.1	218
275	ABCA4 disease progression and a proposed strategy for gene therapy. Human Molecular Genetics, 2009, 18, 931-941.	2.9	163
276	Evaluation of Potential Therapies for a Mouse Model of Human Age-Related Macular Degeneration Caused by Delayed all- <i>trans</i> -Retinal Clearance., 2009, 50, 4917.		45
277	Limited Roles of Rdh8, Rdh12, and Abca4 in all- <i>trans</i> -Retinal Clearance in Mouse Retina., 2009, 50, 5435.		77
278	Involvement of All-trans-retinal in Acute Light-induced Retinopathy of Mice. Journal of Biological Chemistry, 2009, 284, 15173-15183.	3.4	209
279	Crystal structure of native RPE65, the retinoid isomerase of the visual cycle. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17325-17330.	7.1	140
280	Activation of Retinoic Acid Receptors by Dihydroretinoids. Molecular Pharmacology, 2009, 76, 1228-1237.	2.3	40
281	Topology of Class A G Protein-Coupled Receptors: Insights Gained from Crystal Structures of Rhodopsins, Adrenergic and Adenosine Receptors. Molecular Pharmacology, 2009, 75, 1-12.	2.3	101
282	Structure of cone photoreceptors. Progress in Retinal and Eye Research, 2009, 28, 289-302.	15.5	176
283	Comparative Analysis of GPCR Crystal Structures ^{â€} . Photochemistry and Photobiology, 2009, 85, 425-430.	2.5	40
284	Modulation of Molecular Interactions and Function by Rhodopsin Palmitylation. Biochemistry, 2009, 48, 4294-4304.	2.5	31
285	Phospholipids Are Needed for the Proper Formation, Stability, and Function of the Photoactivated Rhodopsinâ°'Transducin Complex. Biochemistry, 2009, 48, 5159-5170.	2.5	36
286	Chemokine receptors and other G protein-coupled receptors. Current Opinion in HIV and AIDS, 2009, 4, 88-95.	3.8	46
287	Ca ²⁺ â€dependent Regulation of Phototransduction ^{â€} . Photochemistry and Photobiology, 2008, 84, 903-910.	2.5	50
288	Mechanical Properties of Bovine Rhodopsin and Bacteriorhodopsin:  Possible Roles in Folding and Function. Langmuir, 2008, 24, 1330-1337.	3.5	43

#	Article	IF	Citations
289	RBP4 Disrupts Vitamin A Uptake Homeostasis in a STRA6-Deficient Animal Model for Matthew-Wood Syndrome. Cell Metabolism, 2008, 7, 258-268.	16.2	163
290	Structures of Rhodopsin Kinase in Different Ligand States Reveal Key Elements Involved in G Protein-coupled Receptor Kinase Activation. Journal of Biological Chemistry, 2008, 283, 14053-14062.	3.4	85
291	Different Properties of the Native and Reconstituted Heterotrimeric G Protein Transducin. Biochemistry, 2008, 47, 12409-12419.	2.5	22
292	Stereospecificity of Retinol Saturase:  Absolute Configuration, Synthesis, and Biological Evaluation of Dihydroretinoids. Journal of the American Chemical Society, 2008, 130, 1154-1155.	13.7	36
293	Impact of Retinal Disease-Associated RPE65 Mutations on Retinoid Isomerization. Biochemistry, 2008, 47, 9856-9865.	2.5	39
294	Heterologous Expression and Purification of the Serotonin Type 4 Receptor from Transgenic Mouse Retina. Biochemistry, 2008, 47, 13296-13307.	2.5	12
295	Trafficking of Membrane-Associated Proteins to Cone Photoreceptor Outer Segments Requires the Chromophore 11- <i>cis</i> -Retinal. Journal of Neuroscience, 2008, 28, 4008-4014.	3.6	97
296	Activation of G Protein–Coupled Receptors: Beyond Two-State Models and Tertiary Conformational Changes. Annual Review of Pharmacology and Toxicology, 2008, 48, 107-141.	9.4	118
297	Retinopathy in Mice Induced by Disrupted All-trans-retinal Clearance. Journal of Biological Chemistry, 2008, 283, 26684-26693.	3.4	250
298	Retinyl Ester Homeostasis in the Adipose Differentiation-related Protein-deficient Retina. Journal of Biological Chemistry, 2008, 283, 25091-25102.	3.4	25
299	Efficient Coupling of Transducin to Monomeric Rhodopsin in a Phospholipid Bilayer. Journal of Biological Chemistry, 2008, 283, 4387-4394.	3.4	233
300	Metabolic Basis of Visual Cycle Inhibition by Retinoid and Nonretinoid Compounds in the Vertebrate Retina. Journal of Biological Chemistry, 2008, 283, 9543-9554.	3.4	85
301	Vertebrate Membrane Proteins: Structure, Function, and Insights from Biophysical Approaches. Pharmacological Reviews, 2008, 60, 43-78.	16.0	92
302	Diseases Caused by Defects in the Visual Cycle: Retinoids as Potential Therapeutic Agents. Annual Review of Pharmacology and Toxicology, 2007, 47, 469-512.	9.4	365
303	Human cone photoreceptor dependence on RPE65 isomerase. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15123-15128.	7.1	135
304	Redundant and unique roles of retinol dehydrogenases in the mouse retina. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19565-19570.	7.1	103
305	Three-dimensional architecture of murine rod outer segments determined by cryoelectron tomography. Journal of Cell Biology, 2007, 177, 917-925.	5.2	192
306	International Union of Basic and Clinical Pharmacology. LXVII. Recommendations for the Recognition and Nomenclature of G Protein-Coupled Receptor Heteromultimers. Pharmacological Reviews, 2007, 59, 5-13.	16.0	274

#	Article	IF	CITATIONS
307	Stabilizing Effect of Zn2+ in Native Bovine Rhodopsin. Journal of Biological Chemistry, 2007, 282, 11377-11385.	3.4	61
308	Topology and Membrane Association of Lecithin: Retinol Acyltransferase. Journal of Biological Chemistry, 2007, 282, 2081-2090.	3.4	53
309	Sequestration of Retinyl Esters Is Essential for Retinoid Signaling in the Zebrafish Embryo. Journal of Biological Chemistry, 2007, 282, 1144-1151.	3.4	32
310	Visual Rhodopsin Sees the Light: Structure and Mechanism of G Protein Signaling. Journal of Biological Chemistry, 2007, 282, 9297-9301.	3.4	100
311	Crystal packing analysis of Rhodopsin crystals. Journal of Structural Biology, 2007, 158, 455-462.	2.8	42
312	Reprint of "Crystal packing analysis of Rhodopsin crystals―[J. Struct. Biol. 158 (2007) 455–462]â~†. Journa of Structural Biology, 2007, 159, 253-260.	ıl 2.8	1
313	Delivery of Retinoid-Based Therapies To Target Tissues. Biochemistry, 2007, 46, 4449-4458.	2.5	79
314	Heterologous Expression of the Adenosine A1 Receptor in Transgenic Mouse Retina. Biochemistry, 2007, 46, 8350-8359.	2.5	17
315	Evidence for RPE65â€independent vision in the coneâ€dominated zebrafish retina. European Journal of Neuroscience, 2007, 26, 1940-1949.	2.6	49
316	Requirements and ontology for a G protein-coupled receptor oligomerization knowledge base. BMC Bioinformatics, 2007, 8, 177.	2.6	42
317	Novel RDH12 mutations associated with Leber congenital amaurosis and cone-rod dystrophy: Biochemical and clinical evaluations. Vision Research, 2007, 47, 2055-2066.	1.4	44
318	Stabilizing Function for Myristoyl Group Revealed by the Crystal Structure of a Neuronal Calcium Sensor, Guanylate Cyclase-Activating Protein 1. Structure, 2007, 15, 1392-1402.	3.3	113
319	G Protein–Coupled Receptor Rhodopsin. Annual Review of Biochemistry, 2006, 75, 743-767.	11.1	663
320	Aberrant Metabolites in Mouse Models of Congenital Blinding Diseases: Formation and Storage of Retinyl Estersâ€. Biochemistry, 2006, 45, 4210-4219.	2.5	35
321	Detecting Molecular Interactions that Stabilize Native Bovine Rhodopsin. Journal of Molecular Biology, 2006, 358, 255-269.	4.2	71
322	The Crystal Structure of GCAP3 Suggests Molecular Mechanism of GCAP-linked Cone Dystrophies. Journal of Molecular Biology, 2006, 359, 266-275.	4.2	44
323	Improvements in G protein-coupled receptor purification yield light stable rhodopsin crystals. Journal of Structural Biology, 2006, 156, 497-504.	2.8	52
324	Lentiviral Expression of Retinal Guanylate Cyclase-1 (RetGC1) Restores Vision in an Avian Model of Childhood Blindness. PLoS Medicine, 2006, 3, e201.	8.4	80

#	Article	IF	Citations
325	Structure of the rhodopsin dimer: a working model for G-protein-coupled receptors. Current Opinion in Structural Biology, 2006, 16, 252-259.	5.7	253
326	Improvement in Rod and Cone Function in Mouse Model of Fundus albipunctatus after Pharmacologic Treatment with 9-cis-Retinal., 2006, 47, 4540.		38
327	Effects of Potent Inhibitors of the Retinoid Cycle on Visual Function and Photoreceptor Protection from Light Damage in Mice. Molecular Pharmacology, 2006, 70, 1220-1229.	2.3	82
328	Functional and Structural Characterization of Rhodopsin Oligomers. Journal of Biological Chemistry, 2006, 281, 11917-11922.	3.4	125
329	Rhodopsin self-associates in asolectin liposomes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3060-3065.	7.1	89
330	Inner retinal photoreception independent of the visual retinoid cycle. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10426-10431.	7.1	60
331	Retinol Dehydrogenase (RDH12) Protects Photoreceptors from Light-induced Degeneration in Mice. Journal of Biological Chemistry, 2006, 281, 37697-37704.	3.4	98
332	Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16123-16128.	7.1	431
333	Autosomal Recessive Retinitis Pigmentosa and E150K Mutation in the Opsin Gene. Journal of Biological Chemistry, 2006, 281, 22289-22298.	3.4	21
334	Characterizing the Metabolism and Physiological Functions of Dihydroretinoids, Charting a Novel Pathway in the Metabolism of Vitamin A. FASEB Journal, 2006, 20, A996.	0.5	0
335	Expression of functional G proteinâ€coupled receptors in photoreceptors of transgenic Xenopus laevis. FASEB Journal, 2006, 20, A919.	0.5	0
336	Crystal structure of human guanylate cyclase activating proteinâ€3. FASEB Journal, 2006, 20, A542.	0.5	0
337	A Critical Role of CaBP4 in the Cone Synapse. , 2005, 46, 4320.		46
338	Pharmacological and rAAV Gene Therapy Rescue of Visual Functions in a Blind Mouse Model of Leber Congenital Amaurosis. PLoS Medicine, 2005, 2, e333.	8.4	120
339	Role of Photoreceptor-specific Retinol Dehydrogenase in the Retinoid Cycle in Vivo. Journal of Biological Chemistry, 2005, 280, 18822-18832.	3.4	139
340	Delayed Dark Adaptation in 11-cis-Retinol Dehydrogenase-deficient Mice. Journal of Biological Chemistry, 2005, 280, 8694-8704.	3.4	92
341	Positively charged retinoids are potent and selective inhibitors of the trans-cis isomerization in the retinoid (visual) cycle. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8162-8167.	7.1	121
342	Long-Term Restoration of Rod and Cone Vision by Single Dose rAAV-Mediated Gene Transfer to the Retina in a Canine Model of Childhood Blindness. Molecular Therapy, 2005, 12, 1072-1082.	8.2	421

#	Article	IF	Citations
343	Diversifying the repertoire of G protein-coupled receptors through oligomerization. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8793-8794.	7.1	57
344	Lecithin:Retinol Acyltransferase Is Responsible for Amidation of Retinylamine, a Potent Inhibitor of the Retinoid Cycle. Journal of Biological Chemistry, 2005, 280, 42263-42273.	3.4	56
345	Retinoid Absorption and Storage Is Impaired in Mice Lacking Lecithin:Retinol Acyltransferase (LRAT). Journal of Biological Chemistry, 2005, 280, 35647-35657.	3.4	256
346	A Novel GCAP1 Missense Mutation (L151F) in a Large Family with Autosomal Dominant Cone-Rod Dystrophy (adCORD)., 2005, 46, 1124.		61
347	Partial Agonism in a G Protein-coupled Receptor. Journal of Biological Chemistry, 2005, 280, 34259-34267.	3.4	43
348	Identifying photoreceptors in blind eyes caused by <i>RPE65</i> mutations: Prerequisite for human gene therapy success. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6177-6182.	7.1	249
349	Expression of Functional G Protein-Coupled Receptors in Photoreceptors of TransgenicXenopus laevisâ€. Biochemistry, 2005, 44, 14509-14518.	2.5	31
350	Related enzymes solve evolutionarily recurrent problems in the metabolism of carotenoids. Trends in Plant Science, 2005, 10, 178-186.	8.8	145
351	A Novel Mutation (I143NT) in Guanylate Cyclase-Activating Protein 1 (GCAP1) Associated with Autosomal Dominant Cone Degeneration., 2004, 45, 3863.		135
352	A Naturally Occurring Mutation of the Opsin Gene (T4R) in Dogs Affects Glycosylation and Stability of the G Protein-coupled Receptor. Journal of Biological Chemistry, 2004, 279, 53828-53839.	3.4	57
353	Impairment of the Transient Pupillary Light Reflex in <i>Rpe65</i> ^{â°'/â°'} Mice and Humans with Leber Congenital Amaurosis., 2004, 45, 1259.		92
354	Retinosomes. Journal of Cell Biology, 2004, 166, 447-453.	5.2	94
355	Lecithin-retinol Acyltransferase Is Essential for Accumulation of All-trans-Retinyl Esters in the Eye and in the Liver. Journal of Biological Chemistry, 2004, 279, 10422-10432.	3.4	321
356	Functional Characterization of Rhodopsin Monomers and Dimers in Detergents. Journal of Biological Chemistry, 2004, 279, 54663-54675.	3.4	118
357	Rhodopsin Signaling and Organization in Heterozygote Rhodopsin Knockout Mice. Journal of Biological Chemistry, 2004, 279, 48189-48196.	3.4	138
358	Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye. Journal of Cell Biology, 2004, 164, 373-383.	5.2	192
359	Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function. Nature Neuroscience, 2004, 7, 1079-1087.	14.8	272
360	Diversity of Guanylate Cyclase-Activating Proteins (GCAPs) in Teleost Fish: Characterization of Three Novel GCAPs (GCAP4, GCAP5, GCAP7) from Zebrafish (Danio rerio) and Prediction of Eight GCAPs (GCAP1-8) in Pufferfish (Fugu rubripes). Journal of Molecular Evolution, 2004, 59, 204-217.	1.8	98

#	Article	IF	CITATIONS
361	Oligomerization of G Protein-Coupled Receptors: Past, Present, and Futureâ€. Biochemistry, 2004, 43, 15643-15656.	2.5	213
362	A concept for G protein activation by G protein-coupled receptor dimers: the transducin/rhodopsin interface. Photochemical and Photobiological Sciences, 2004, 3, 628.	2.9	163
363	Guanylate cyclase-activating proteins: structure, function, and diversity. Biochemical and Biophysical Research Communications, 2004, 322, 1123-1130.	2.1	100
364	The supramolecular structure of the GPCR rhodopsin in solution and native disc membranes. Molecular Membrane Biology, 2004, 21, 435-446.	2.0	75
365	The G protein-coupled receptor rhodopsin in the native membrane. FEBS Letters, 2004, 564, 281-288.	2.8	196
366	Phototransduction: crystal clear. Trends in Biochemical Sciences, 2003, 28, 479-487.	7. 5	163
367	Rhodopsin phosphorylation: 30 years later. Progress in Retinal and Eye Research, 2003, 22, 417-434.	15.5	138
368	Evaluation of the role of the retinal G proteinâ€coupled receptor (RGR) in the vertebrate retina ⟨i⟩in vivo⟨ i⟩. Journal of Neurochemistry, 2003, 85, 944-956.	3.9	80
369	Rhodopsin dimers in native disc membranes. Nature, 2003, 421, 127-128.	27.8	732
370	Is rhodopsin dimeric in native retinal rods?. Nature, 2003, 426, 31-31.	27.8	13
370 371	Is rhodopsin dimeric in native retinal rods?. Nature, 2003, 426, 31-31. G Protein-Coupled Receptor Rhodopsin: A Prospectus. Annual Review of Physiology, 2003, 65, 851-879.	27.8	13 237
371	G Protein-Coupled Receptor Rhodopsin: A Prospectus. Annual Review of Physiology, 2003, 65, 851-879. Sequence Analyses of G-Protein-Coupled Receptors: Similarities to Rhodopsinâ€. Biochemistry, 2003, 42,	13.1	237
371 372	G Protein-Coupled Receptor Rhodopsin: A Prospectus. Annual Review of Physiology, 2003, 65, 851-879. Sequence Analyses of G-Protein-Coupled Receptors: Similarities to Rhodopsinâ€. Biochemistry, 2003, 42, 2759-2767.	13.1 2.5	237 339
371 372 373	G Protein-Coupled Receptor Rhodopsin: A Prospectus. Annual Review of Physiology, 2003, 65, 851-879. Sequence Analyses of G-Protein-Coupled Receptors: Similarities to Rhodopsinâ€. Biochemistry, 2003, 42, 2759-2767. The retinoid cycle and retina disease. Vision Research, 2003, 43, 2957-2958. Evolutionary analysis of rhodopsin and cone pigments: connecting the three-dimensional structure	13.1 2.5 1.4	237 339 54
371 372 373	G Protein-Coupled Receptor Rhodopsin: A Prospectus. Annual Review of Physiology, 2003, 65, 851-879. Sequence Analyses of G-Protein-Coupled Receptors: Similarities to Rhodopsinâ€. Biochemistry, 2003, 42, 2759-2767. The retinoid cycle and retina disease. Vision Research, 2003, 43, 2957-2958. Evolutionary analysis of rhodopsin and cone pigments: connecting the three-dimensional structure with spectral tuning and signal transfer. FEBS Letters, 2003, 555, 151-159. Retinoid cycle in the vertebrate retina: experimental approaches and mechanisms of isomerization.	13.1 2.5 1.4 2.8	237 339 54 16
371 372 373 374	G Protein-Coupled Receptor Rhodopsin: A Prospectus. Annual Review of Physiology, 2003, 65, 851-879. Sequence Analyses of G-Protein-Coupled Receptors: Similarities to Rhodopsinâ€. Biochemistry, 2003, 42, 2759-2767. The retinoid cycle and retina disease. Vision Research, 2003, 43, 2957-2958. Evolutionary analysis of rhodopsin and cone pigments: connecting the three-dimensional structure with spectral tuning and signal transfer. FEBS Letters, 2003, 555, 151-159. Retinoid cycle in the vertebrate retina: experimental approaches and mechanisms of isomerization. Vision Research, 2003, 43, 2959-2981.	13.1 2.5 1.4 2.8	237 339 54 16

#	Article	IF	CITATIONS
379	Pharmacological Chaperone-mediated in Vivo Folding and Stabilization of the P23H-opsin Mutant Associated with Autosomal Dominant Retinitis Pigmentosa. Journal of Biological Chemistry, 2003, 278, 14442-14450.	3.4	183
380	Organization of the G Protein-coupled Receptors Rhodopsin and Opsin in Native Membranes. Journal of Biological Chemistry, 2003, 278, 21655-21662.	3.4	534
381	The Crystallographic Model of Rhodopsin and Its Use in Studies of Other G Protein–Coupled Receptors. Annual Review of Biophysics and Biomolecular Structure, 2003, 32, 375-397.	18.3	116
382	Recovery of Visual Functions in a Mouse Model of Leber Congenital Amaurosis. Journal of Biological Chemistry, 2002, 277, 19173-19182.	3.4	138
383	Biochemical and Physiological Properties of Rhodopsin Regenerated with 11-cis-6-Ring- and 7-Ring-retinals. Journal of Biological Chemistry, 2002, 277, 42315-42324.	3.4	36
384	Dual-substrate Specificity Short Chain Retinol Dehydrogenases from the Vertebrate Retina. Journal of Biological Chemistry, 2002, 277, 45537-45546.	3.4	179
385	Characterization of retinal guanylate cyclase-activating protein 3 (GCAP3) from zebrafish to man. European Journal of Neuroscience, 2002, 15, 63-78.	2.6	95
386	Crystal Structure of Rhodopsin: Implication for Vision and Beyond. Mechanisms of Acti. Scientific World Journal, The, 2002, 2, 106-107.	2.1	1
387	Advances in Determination of a High-Resolution Three-Dimensional Structure of Rhodopsin, a Model of G-Protein-Coupled Receptors (GPCRs)â€,‡. Biochemistry, 2001, 40, 7761-7772.	2,5	627
388	Isomerization of 11 -cis- Retinoids to All-trans-retinoids in Vitro and in Vivo. Journal of Biological Chemistry, 2001, 276, 48483-48493.	3.4	49
389	Activation of rhodopsin: new insights from structural and biochemical studies. Trends in Biochemical Sciences, 2001, 26, 318-324.	7.5	403
390	Confronting Complexity: the Interlink of Phototransduction and Retinoid Metabolism in the Vertebrate Retina. Progress in Retinal and Eye Research, 2001, 20, 469-529.	15.5	334
391	Characterization of a Dehydrogenase Activity Responsible for Oxidation of 11-cis-Retinol in the Retinal Pigment Epithelium of Mice with a Disrupted RDH5 Gene. Journal of Biological Chemistry, 2001, 276, 32456-32465.	3.4	56
392	Calcium-sensitive Regions of GCAP1 as Observed by Chemical Modifications, Fluorescence, and EPR Spectroscopies. Journal of Biological Chemistry, 2001, 276, 43361-43373.	3 . 4	39
393	Mechanism of Rhodopsin Activation as Examined with Ring-constrained Retinal Analogs and the Crystal Structure of the Ground State Protein. Journal of Biological Chemistry, 2001, 276, 26148-26153.	3.4	37
394	[21] Multienzyme analysis of visual cycle. Methods in Enzymology, 2000, 316, 330-344.	1.0	23
395	Rod and cone visual cycle consequences of a null mutation in the 11 -cis-retinol dehydrogenase gene in man. Visual Neuroscience, 2000, 17 , 667 - 678 .	1.0	99
396	Ca2+-binding proteins in the retina: Structure, function, and the etiology of human visual diseases. BioEssays, 2000, 22, 337-350.	2.5	149

#	Article	IF	Citations
397	Disruption of the 11- cis -Retinol Dehydrogenase Gene Leads to Accumulation of cis -Retinols and cis -Retinyl Esters. Molecular and Cellular Biology, 2000, 20, 4275-4287.	2.3	120
398	Stereoisomeric Specificity of the Retinoid Cycle in the Vertebrate Retina. Journal of Biological Chemistry, 2000, 275, 28128-28138.	3.4	49
399	X-Ray Diffraction Analysis of Three-Dimensional Crystals of Bovine Rhodopsin Obtained from Mixed Micelles, Journal of Structural Biology, 2000, 130, 73-80 Ca2+-binding proteins in the retinal from discovery to etiology of human disease11The nucleotide	2.8	176
400	sequences reported in this manuscript have been submitted to the GenBankâ,,¢/EMBL databank with the following accession numbers: short form of human CaBP1, AF169148; long form of human CaBP1, AF169149; short form of bovine CaBP1, AF169150; long form of bovine CaBP1, AF169151; short form of mouse CaBP1, AF169153; long form of mouse CaBP1, AF169152; human CaBP2, AF169154; bovine CaBP2, AF1	4.1	38
401	AF169155; short form of mouse. Biochimica Et Biophysica Acta - Molecular Cell Research, 2000, 1498, 233 Isomerization of all-trans-Retinol to cis-Retinols in Bovine Retinal Pigment Epithelial Cells:  Dependence on the Specificity of Retinoid-Binding Proteins. Biochemistry, 2000, 39, 11370-11380.	2.5	91
402	Light-Induced Conformational Changes of Rhodopsin Probed by Fluorescent Alexa594 Immobilized on the Cytoplasmic Surface. Biochemistry, 2000, 39, 15225-15233.	2.5	42
403	Three-dimensional Structure of Guanylyl Cyclase Activating Protein-2, a Calcium-sensitive Modulator of Photoreceptor Guanylyl Cyclases. Journal of Biological Chemistry, 1999, 274, 19329-19337.	3.4	143
404	Preferential Release of 11-cis-retinol from Retinal Pigment Epithelial Cells in the Presence of Cellular Retinaldehyde-binding Protein. Journal of Biological Chemistry, 1999, 274, 8577-8585.	3.4	122
405	Molecular Characterization of a Third Member of the Guanylyl Cyclase-activating Protein Subfamily. Journal of Biological Chemistry, 1999, 274, 6526-6535.	3.4	131
406	A novel form of rhodopsin kinase from chicken retina and pineal gland ¹ . FEBS Letters, 1999, 454, 115-121.	2.8	30
407	Kinetics of Visual Pigment Regeneration in Excised Mouse Eyes and in Mice with a Targeted Disruption of the Gene Encoding Interphotoreceptor Retinoid-Binding Protein or Arrestinâ€. Biochemistry, 1999, 38, 12012-12019.	2.5	146
408	Identification of a Guanylyl Cyclase-Activating Protein-Binding Site within the Catalytic Domain of Retinal Guanylyl Cyclase 1. Biochemistry, 1999, 38, 1387-1393.	2.5	63
409	Molecular Mechanism of Visual Transduction. Novartis Foundation Symposium, 1999, 224, 191-207.	1.1	3
410	Identification of a Single Phosphorylation Site Within Octopus Rhodopsin. Photochemistry and Photobiology, 1998, 68, 824-828.	2.5	10
411	Guanylate-cyclase-inhibitory protein is a frog retinal Ca2+-binding protein related to mammalian guanylate-cyclase-activating proteins. FEBS Journal, 1998, 252, 591-599.	0.2	46
412	GCAP1(Y99C) Mutant Is Constitutively Active in Autosomal Dominant Cone Dystrophy. Molecular Cell, 1998, 2, 129-133.	9.7	150
413	Reduction of all-trans-retinal limits regeneration of visual pigment in mice. Vision Research, 1998, 38, 1325-1333.	1.4	127
414	Changes in Biological Activity and Folding of Guanylate Cyclase-Activating Protein 1 as a Function of Calciumâ€. Biochemistry, 1998, 37, 248-257.	2.5	89

#	Article	IF	CITATIONS
415	Molecular cloning and localization of rhodopsin kinase in the mammalian pineal. Visual Neuroscience, 1997, 14, 225-232.	1.0	52
416	Functional Differences in the Interaction of Arrestin and Its Splice Variant, p44, with Rhodopsin. Biochemistry, 1997, 36, 9253-9260.	2.5	94
417	Functional Reconstitution of Photoreceptor Guanylate Cyclase with Native and Mutant Forms of Guanylate Cyclase-Activating Protein 1. Biochemistry, 1997, 36, 4295-4302.	2.5	83
418	Activation and inactivation steps in the visual transduction pathway. Current Opinion in Neurobiology, 1997, 7, 500-504.	4.2	73
419	GTP-Binding-Protein-Coupled Receptor Kinases Two Mechanistic Models. FEBS Journal, 1997, 248, 261-269.	0.2	103
420	Opsin/all-trans-Retinal Complex Activates Transducin by Different Mechanisms Than Photolyzed Rhodopsinâ€. Biochemistry, 1996, 35, 2901-2908.	2.5	140
421	Expression of GCAP 1 and GCAP2 in the retinal degeneration (rd) mutant chicken retina. FEBS Letters, 1996, 385, 47-52.	2.8	27
422	Splice Variants of Arrestins. Experimental Eye Research, 1996, 63, 599-602.	2.6	15
423	Turned on by Ca2+! The physiology and pathology of Ca2+-binding proteins in the retina. Trends in Neurosciences, 1996, 19, 547-554.	8.6	287
424	Structural and Enzymatic Aspects of Rhodopsin Phosphorylation. Journal of Biological Chemistry, 1996, 271, 5215-5224.	3.4	117
425	Mechanisms of Opsin Activation. Journal of Biological Chemistry, 1996, 271, 20621-20630.	3.4	104
426	Rhodopsin Phosphorylation and Dephosphorylation in Vivo. Journal of Biological Chemistry, 1995, 270, 14259-14262.	3.4	154
427	Guanylyl Cyclase Activating Protein. Journal of Biological Chemistry, 1995, 270, 22029-22036.	3.4	201
428	Characterization of a truncated form of arrestin isolated from bovine rod outer segments. Protein Science, 1994, 3, 314-324.	7.6	68
429	Structure and functions of arrestins. Protein Science, 1994, 3, 1355-1361.	7.6	83
430	Topographic study of arrestin using differential chemical modifications and hydrogen/deuterium exchange. Protein Science, 1994, 3, 2428-2434.	7.6	86
431	Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein. Neuron, 1994, 13, 395-404.	8.1	449
432	Rod Outer Segment Retinol Dehydrogenase: Substrate Specificity and Role in Phototransduction. Biochemistry, 1994, 33, 13741-13750.	2.5	181

#	Article	IF	CITATIONS
433	Sequential phosphorylation of rhodopsin at multiple sites. Biochemistry, 1993, 32, 5718-5724.	2.5	256
434	Purification of Arrestin from Bovine Retinas. Methods in Neurosciences, 1993, 15, 226-236.	0.5	18
435	Binding of inositol phosphates to arrestin. FEBS Letters, 1991, 295, 195-199.	2.8	63
436	Anti-rhodopsin monoclonal antibodies of defined specificity: Characterization and application. Vision Research, 1991, 31, 17-31.	1.4	225
437	The catalytic subunit of phosphatase 2A dephosphorylates phosphoopsin. Biochemistry, 1989, 28, 415-419.	2.5	87
438	Synthesis of phosphopeptides containing <i>O</i> â€phosphoserine or <i>O</i> â€phosphothreonine. International Journal of Peptide and Protein Research, 1989, 33, 468-476.	0.1	35