Inwon C Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2772183/publications.pdf Version: 2024-02-01

INWON C KIM

#	Article	IF	CITATIONS
1	On volume-preserving crystalline mean curvature flow. Mathematische Annalen, 2022, 384, 1-42.	1.4	3
2	A Hele-Shaw Limit Without Monotonicity. Archive for Rational Mechanics and Analysis, 2022, 243, 829-868.	2.4	9
3	Weak Solutions to the Muskat Problem with Surface Tension Via Optimal Transport. Archive for Rational Mechanics and Analysis, 2021, 239, 389-430.	2.4	12
4	Darcy's Law with a Source Term. Archive for Rational Mechanics and Analysis, 2021, 239, 1349-1393.	2.4	5
5	Porous Medium Equation with a Drift: Free Boundary Regularity. Archive for Rational Mechanics and Analysis, 2021, 242, 1177-1228.	2.4	5
6	Head and Tail Speeds of Mean Curvature Flow with Forcing. Archive for Rational Mechanics and Analysis, 2020, 235, 287-354.	2.4	2
7	On mean curvature flow with forcing. Communications in Partial Differential Equations, 2020, 45, 414-455.	2.2	10
8	Volume preserving mean curvature flow for star-shaped sets. Calculus of Variations and Partial Differential Equations, 2020, 59, 1.	1.7	10
9	Singular limit of the porous medium equation with a drift. Advances in Mathematics, 2019, 349, 682-732.	1.1	8
10	Congested Aggregation via Newtonian Interaction. Archive for Rational Mechanics and Analysis, 2018, 227, 1-67.	2.4	21
11	Uniform convergence for the incompressible limit of a tumor growth model. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2018, 35, 1321-1354.	1.4	7
12	On nonlinear cross-diffusion systems: an optimal transport approach. Calculus of Variations and Partial Differential Equations, 2018, 57, 1.	1.7	13
13	Liquid Drops on a Rough Surface. Communications on Pure and Applied Mathematics, 2018, 71, 2429-2499.	3.1	6
14	Regularity Properties of Degenerate Diffusion Equations with Drifts. SIAM Journal on Mathematical Analysis, 2018, 50, 4371-4406.	1.9	10
15	Porous medium equation to Hele-Shaw flow with general initial density. Transactions of the American Mathematical Society, 2017, 370, 873-909.	0.9	26
16	Free boundary problems for tumor growth: A viscosity solutions approach. Nonlinear Analysis: Theory, Methods & Applications, 2016, 138, 207-228.	1.1	10
17	Quasistatic Droplets in Randomly Perforated Domains. Archive for Rational Mechanics and Analysis, 2015, 211-281.	2.4	4
18	Quantitative homogenization of elliptic partial differential equations with random oscillatory boundary data. Journal Des Mathematiques Pures Et Appliquees, 2015, 103, 958-1002.	1.6	4

INWON C KIM

#	Article	lF	CITATIONS
19	Liquid drops sliding down an inclined plane. Transactions of the American Mathematical Society, 2014, 366, 6119-6150.	0.9	8
20	Quasi-static evolution and congested crowd transport. Nonlinearity, 2014, 27, 823-858.	1.4	32
21	Dynamic Stability of Equilibrium Capillary Drops. Archive for Rational Mechanics and Analysis, 2014, 211, 819-878.	2.4	8
22	Homogenization for nonlinear PDEs in general domains with oscillatory Neumann boundary data. Journal Des Mathematiques Pures Et Appliquees, 2014, 102, 419-448.	1.6	12
23	An Aggregation Equation with Degenerate Diffusion: Qualitative Property of Solutions. SIAM Journal on Mathematical Analysis, 2013, 45, 2995-3018.	1.9	11
24	Nonlinear Elliptic–Parabolic Problems. Archive for Rational Mechanics and Analysis, 2013, 210, 975-1020.	2.4	10
25	Homogenization of Neumann boundary data with fully nonlinear operator. Analysis and PDE, 2013, 6, 951-972.	1.4	8
26	The two-phase Stefan problem: regularization near Lipschitz initial data by phase dynamics. Analysis and PDE, 2012, 5, 1063-1103.	1.4	3
27	The Patlak–Keller–Segel Model and Its Variations: Properties of Solutions via Maximum Principle. SIAM Journal on Mathematical Analysis, 2012, 44, 568-602.	1.9	52
28	Homogenization and error estimates of free boundary velocities in periodic media. Applicable Analysis, 2012, 91, 1177-1187.	1.3	0
29	Viscosity Solutions for the Two-Phase Stefan Problem. Communications in Partial Differential Equations, 2011, 36, 42-66.	2.2	17
30	A variational approach to a quasi-static droplet model. Calculus of Variations and Partial Differential Equations, 2011, 41, 1-19.	1.7	18
31	Homogenization of one-phase Stefan-type problems in periodic and random media. Transactions of the American Mathematical Society, 2010, 362, 4161-4190.	0.9	6
32	Degenerate diffusion with a drift potential: A viscosity solutions approach. Discrete and Continuous Dynamical Systems, 2010, 27, 767-786.	0.9	15
33	Homogenization of a Hele–Shaw Problem in Periodic and Random Media. Archive for Rational Mechanics and Analysis, 2009, 194, 507-530.	2.4	11
34	Error estimates on homogenization of free boundary velocities in periodic media. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2009, 26, 999-1019.	1.4	2
35	Global Existence and Uniqueness of Solutions to a Model of Price Formation. SIAM Journal on Mathematical Analysis, 2009, 41, 2107-2135.	1.9	18
36	Local regularization of the one-phase Hele-Shaw flow. Indiana University Mathematics Journal, 2009, 58, 2765-2804.	0.9	7

INWON C KIM

#	Article	IF	CITATIONS
37	Viscosity solutions for a model of contact line motion. Interfaces and Free Boundaries, 2009, 11, 37-60.	0.8	8
38	A Two-Sided Contracting Stefan Problem. Communications in Partial Differential Equations, 2008, 33, 2225-2256.	2.2	6
39	Homogenization of a Model Problem on Contact Angle Dynamics. Communications in Partial Differential Equations, 2008, 33, 1235-1271.	2.2	9
40	Regularity for the one-phase Hele-Shaw problem from a Lipschitz initial surface. American Journal of Mathematics, 2007, 129, 527-582.	1.1	22
41	Homogenization of the Free Boundary Velocity. Archive for Rational Mechanics and Analysis, 2007, 185, 69-103.	2.4	9
42	Regularity of the free boundary for the one phase Hele–Shaw problem. Journal of Differential Equations, 2006, 223, 161-184.	2.2	14
43	Long time regularity of solutions of the Hele–Shaw problem. Nonlinear Analysis: Theory, Methods & Applications, 2006, 64, 2817-2831.	1.1	4
44	Waiting time phenomena of the Hele-Shaw and the Stefan problem. Indiana University Mathematics Journal, 2006, 55, 525-552.	0.9	7
45	The one-phase Hele-Shaw problem with singularities. Journal of Geometric Analysis, 2005, 15, 641-667.	1.0	8
46	A Free Boundary Problem with Curvature. Communications in Partial Differential Equations, 2005, 30, 121-138.	2.2	4
47	Uniqueness and Existence Results on the Hele-Shaw and the Stefan Problems. Archive for Rational Mechanics and Analysis, 2003, 168, 299-328.	2.4	89
48	A free boundary problem arising in flame propagation. Journal of Differential Equations, 2003, 191, 470-489.	2.2	10