Svyatoslav Savin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2772166/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Additional Amino Acid Replacements on the Properties of Multi-point Mutant Bacterial Formate Dehyderogenase PseFDH SM4S. , 2022, 14, 82-91.		5
2	Preparation of Recombinant Formate Dehydrogenase from Thermotolerant Yeast Ogataea parapolymorpha and Crystallization of Its Apo- and Holo- Forms. Moscow University Chemistry Bulletin, 2021, 76, 49-55.	0.6	2
3	Influence of His6 Sequence on the Properties of Formate Dehydrogenase from Bacterium Pseudomonas sp. 101. Moscow University Chemistry Bulletin, 2020, 75, 250-257.	0.6	14
4	Highly-Active Recombinant Formate Dehydrogenase from Pathogenic Bacterium Staphylococcus aureus: Preparation and Crystallization. Biochemistry (Moscow), 2020, 85, 689-696.	1.5	12
5	Effect of His6-tag Position on the Expression and Properties of Phenylacetone Monooxygenase from Thermobifida fusca. Biochemistry (Moscow), 2020, 85, 575-582.	1.5	5
6	Determination of the Kinetic Parameters of a Wild-Type D-Amino Acid Oxidase from Yeast and Its Mutant Forms in a Reaction of Cephalosporin C Oxidation. Moscow University Chemistry Bulletin, 2019, 74, 169-172.	0.6	1
7	Comparison of Thermal Stability of New Formate Dehydrogenases by Differential Scanning Calorimetry. Moscow University Chemistry Bulletin, 2018, 73, 80-84.	0.6	10
8	Effect of Medium pH And Ion Strength on the Thermal Stability of Plant Formate Dehydrogenases. Moscow University Chemistry Bulletin, 2018, 73, 199-203.	0.6	1
9	Rational Design of Practically Important Enzymes. Moscow University Chemistry Bulletin, 2018, 73, 1-6.	0.6	21
10	Enzymatic Lysis of Living Microbial Cells: A Universal Approach to Calculating the Rate of Cell Lysis in Turbidimetric Measurements. Moscow University Chemistry Bulletin, 2018, 73, 47-52.	0.6	10
11	Preparation and characterization of multipoint yeast D-amino acid oxidase mutants with improved stability and activity. Moscow University Chemistry Bulletin, 2017, 72, 218-223.	0.6	1
12	Bacteriolytic Activity Of Human Interleukin-2, Chicken Egg Lysozyme In The Presence Of Potential Effectors. Acta Naturae, 2017, 9, 82-87.	1.7	1
13	Influence of Met/Leu amino acid changes on catalytic properties and oxidative and thermal stability of yeast D-amino acid oxidase. Moscow University Chemistry Bulletin, 2016, 71, 243-252.	0.6	6
14	Human Interleukin-2 and Hen Egg White Lysozyme: Screening for Bacteriolytic Activity against Various Bacterial Cells. Acta Naturae, 2016, 8, 98-102.	1.7	1
15	Comparison of bacteriolytic activity of human interleukin-2 and chicken egg lysozyme on Lactobacillus plantarum and Escherichia coli cells. Moscow University Chemistry Bulletin, 2015, 70, 287-291.	0.6	4
16	Role of a Structurally Equivalent Phenylalanine Residue in Catalysis and Thermal Stability of Formate Dehydrogenases from Different Sources. Biochemistry (Moscow), 2015, 80, 1690-1700.	1.5	18
17	Improvement of the soy formate dehydrogenase properties by rational design. Protein Engineering, Design and Selection, 2015, 28, 171-178.	2.1	21
18	The Role of Ala198 in the Stability and Coenzyme Specificity of Bacterial Formate Dehydrogenases. Acta Naturae, 2015, 7, 60-69.	1.7	34

Svyatoslav Savin

#	Article	IF	CITATIONS
19	Additivity of the Stabilization Effect of Single Amino Acid Substitutions in Triple Mutants of Recombinant Formate Dehydrogenase from the Soybean Glycine max. Acta Naturae, 2015, 7, 55-64.	1.7	5
20	The role of ala198 in the stability and coenzyme specificity of bacterial formate dehydrogenases. Acta Naturae, 2015, 7, 60-9.	1.7	11
21	Additivity of the Stabilization Effect of Single Amino Acid Substitutions in Triple Mutants of Recombinant Formate Dehydrogenase from the Soybean Glycine max. Acta Naturae, 2015, 7, 55-64.	1.7	2
22	Recombinant alpha-amino ester acid hydrolase from Xanthomonas rubrilineans VKPM B-9915 is a highly efficient biocatalyst of cephalexin synthesis. Moscow University Chemistry Bulletin, 2014, 69, 62-67.	0.6	2
23	Expression and characterization of mutant forms of penicillin acylase from Alcaligenes faecalis. Moscow University Chemistry Bulletin, 2014, 69, 86-91.	0.6	0
24	Study of the Structure-Function-Stability Relationships in Yeast D-amino Acid Oxidase: Hydrophobization of Alpha-Helices. Acta Naturae, 2014, 6, 76-88.	1.7	7
25	Study of the Structure-Function-Stability Relationships in Yeast D-amino Acid Oxidase: Hydrophobization of Alpha-Helices. Acta Naturae, 2014, 6, 76-88.	1.7	9
26	Engineering catalytic properties and thermal stability of plant formate dehydrogenase by single-point mutations. Protein Engineering, Design and Selection, 2012, 25, 781-788.	2.1	27
27	Stabilization of plant formate dehydrogenase by rational design. Biochemistry (Moscow), 2012, 77, 1199-1209.	1.5	12
28	NAD+-dependent Formate Dehydrogenase from Plants. Acta Naturae, 2011, 3, 38-54.	1.7	76
29	NAD (+) -dependent Formate Dehydrogenase from Plants. Acta Naturae, 2011, 3, 38-54.	1.7	30
30	The 3D-structural modeling of yeast D-amino acid oxidase. Moscow University Chemistry Bulletin, 2010, 65, 121-126.	0.6	2
31	Membrane detection of nanogram amounts of formate dehydrogenase. Moscow University Chemistry Bulletin, 2010, 65, 131-134.	0.6	1
32	Assessment of Formate Dehydrogenase Stress Stability in vivo using Inactivation by Hydrogen Peroxide. Acta Naturae, 2010, 2, 97-101.	1.7	19
33	Assessment of Formate Dehydrogenase Stress Stability In vivo using Inactivation by Hydrogen Peroxide. Acta Naturae, 2010, 2, 97-102.	1.7	6
34	Creation of biocatalysts with prescribed properties. Russian Chemical Bulletin, 2008, 57, 1033-1041.	1.5	6
35	Inactivation of formate dehydrogenase at pH 8. Moscow University Chemistry Bulletin, 2008, 63, 60-62.	0.6	2