Jae Whan Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2772163/publications.pdf

Version: 2024-02-01

101543 98798 4,765 93 36 h-index citations papers

g-index 93 93 93 5118 docs citations times ranked citing authors all docs

67

#	Article	IF	CITATIONS
1	Effects of Hard Segment of Polyurethane with Disulfide Bonds on Shape Memory and Self-Healing Ability. Macromolecular Research, 2020, 28, 234-240.	2.4	17
2	Rapid remote actuation in shape memory hyperbranched polyurethane composites using cross-linked photothermal reduced graphene oxide networks. Sensors and Actuators B: Chemical, 2020, 321, 128468.	7.8	18
3	Interaction of photothermal graphene networks with polymer chains and laser-driven photo-actuation behavior of shape memory polyurethane/epoxy/epoxy-functionalized graphene oxide nanocomposites. Polymer, 2019, 181, 121791.	3.8	30
4	Nanodiamond-grafted hyperbranched polymers anchored with carbon nanotubes: Mechanical, thermal, and photothermal shape-recovery properties. Polymer, 2019, 160, 204-209.	3.8	18
5	Crystallization, orientation, and mechanical properties of laser-heated photothermally drawn polypropylene/multi-walled carbon nanotube fibers. European Polymer Journal, 2017, 91, 70-80.	5.4	20
6	Synthesis of clickâ€coupled graphene sheets with hyperbranched polyurethane: Effective exfoliation and enhancement of nanocomposite properties. Journal of Applied Polymer Science, 2017, 134, .	2.6	3
7	Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene. Progress in Polymer Science, 2017, 67, 1-47.	24.7	491
8	Polyurethane nanocomposites with clickâ€coupled nanodiamonds exhibiting enhanced mechanical and shape memory effects. Journal of Applied Polymer Science, 2017, 134, 45465.	2.6	8
9	Orientation and mechanical properties of laser-induced photothermally drawn fibers composed of multiwalled carbon nanotubes and poly(ethylene terephthalate). Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 603-609.	2.1	5
10	Synthesis and properties of click coupled graphene oxide sheets with threeâ€dimensional macromolecules. Journal of Applied Polymer Science, 2016, 133, .	2.6	5
11	Click coupled stitched graphene sheets and their polymer nanocomposites with enhanced photothermal and mechanical properties. Composites Part A: Applied Science and Manufacturing, 2016, 87, 78-85.	7.6	19
12	Functionalization of graphene with self-doped conducting polypyrrole by click coupling. Journal of Colloid and Interface Science, 2015, 455, 63-70.	9.4	18
13	Recent Trends of Polymer-Protein Conjugate Application in Biocatalysis: A Review. Polymer Reviews, 2015, 55, 163-198.	10.9	17
14	Mechanical and photothermal shape memory properties of in-situ polymerized hyperbranched polyurethane composites with functionalized graphene. Fibers and Polymers, 2015, 16, 1766-1771.	2.1	10
15	Near infrared laser-heated electrospinning and mechanical properties of poly(ethylene) Tj ETQq1 1 0.784314 rgBT	/9.yerlock	10 Tf 50 18
16	An environmentally friendly approach to functionalizing carbon nanotubes for fabricating a strong biocomposite Film. RSC Advances, 2014, 4, 5382.	3.6	6
17	Tailored and strong electro-responsive shape memory actuation in carbon nanotube-reinforced hyperbranched polyurethane composites. Sensors and Actuators B: Chemical, 2014, 193, 384-390.	7.8	50
18	Synthesis and electrochemical properties of conducting polyaniline/graphene hybrids by click chemistry. RSC Advances, 2014, 4, 23936-23942.	3.6	13

#	Article	IF	CITATIONS
19	The synergistic effect of the combined thin multi-walled carbon nanotubes and reduced graphene oxides on photothermally actuated shape memory polyurethane composites. Journal of Colloid and Interface Science, 2014, 432, 128-134.	9.4	75
20	Soluble conducting polymer-functionalized graphene oxide for air-operable actuator fabrication. Journal of Materials Chemistry A, 2014, 2, 4788-4794.	10.3	23
21	A reactive graphene sheet in situ functionalized hyperbranched polyurethane for high performance shape memory material. RSC Advances, 2014, 4, 15146-15153.	3.6	24
22	High-Speed Actuation and Mechanical Properties of Graphene-Incorporated Shape Memory Polyurethane Nanofibers. Journal of Physical Chemistry C, 2014, 118, 10408-10415.	3.1	74
23	Thermomechanical and waterâ€responsive shape memory properties of carbon nanotubesâ€reinforced hyperbranched polyurethane composites. Journal of Applied Polymer Science, 2013, 127, 2670-2677.	2.6	14
24	Graphene-crosslinked polyurethane block copolymer nanocomposites with enhanced mechanical, electrical, and shape memory properties. RSC Advances, 2013, 3, 13796.	3.6	63
25	The mechanical properties of polyurethane foam wound dressing hybridized with alginate hydrogel and jute fiber. Fibers and Polymers, 2013, 14, 173-181.	2.1	30
26	Functionalized multi-walled carbon nanotubes with hyperbranched aromatic polyamide for poly(methyl methacrylate) composites. Fibers and Polymers, 2013, 14, 182-187.	2.1	12
27	Biocomposites: Mechanically Robust, Electrically Conductive Biocomposite Films Using Antimicrobial Chitosan-Functionalized Graphenes (Part. Part. Syst. Charact. 8/2013). Particle and Particle Systems Characterization, 2013, 30, 648-648.	2.3	0
28	Conducting coreâ€sheath nanofibers for electroactive shapeâ€memory applications. Polymers for Advanced Technologies, 2013, 24, 609-614.	3.2	10
29	Dispersion and magnetic field-induced alignment of functionalized carbon nanotubes in liquid crystals. Synthetic Metals, 2013, 181, 10-17.	3.9	36
30	Mechanically Robust, Electrically Conductive Biocomposite Films Using Antimicrobial Chitosanâ€Functionalized Graphenes. Particle and Particle Systems Characterization, 2013, 30, 721-727.	2.3	46
31	Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites. Applied Surface Science, 2013, 266, 360-367.	6.1	275
32	Highly branched polyurethane: Synthesis, characterization and effects of branching on dispersion of carbon nanotubes. Composites Part B: Engineering, 2013, 45, 165-171.	12.0	31
33	Synthesis of calix[4]arene-segmented polyurethane and its nanocomposites with single-walled carbon nanotubes. Polymer Bulletin, 2013, 70, 1697-1707.	3.3	2
34	Tailored dielectric and mechanical properties of noncovalently functionalized carbon nanotube/poly(styreneâ€∢i>b⟨i>â€(ethyleneâ€∢i>co⟨i>â€butylene)â€∢i>b⟨i>â€styrene) nanocomposites. Jou Applied Polymer Science, 2013, 129, 2305-2312.	rn al of	16
35	Click coupled graphene for fabrication of highâ€performance polymer nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 39-47.	2.1	59
36	Use of acetylated softwood kraft lignin as filler in synthetic polymers. Fibers and Polymers, 2012, 13, 1310-1318.	2.1	65

#	Article	IF	Citations
37	Surface morphology and electrical properties of polyurethane nanofiber webs sprayâ€coated with carbon nanotubes. Surface and Interface Analysis, 2012, 44, 405-411.	1.8	11
38	Nanostructured hyperbranched polyurethane elastomer hybrids that incorporate polyhedral oligosilsesquioxane. Reactive and Functional Polymers, 2012, 72, 227-232.	4.1	37
39	Synthesis of mechanically robust antimicrobial nanocomposites by click coupling of hyperbranched polyurethane and carbon nanotubes. Polymer, 2012, 53, 2023-2031.	3.8	63
40	Highly stretchable, transparent and scalable elastomers with tunable dielectric permittivity. Journal of Materials Chemistry, 2011, 21, 7686.	6.7	55
41	Size-controlled nanoparticles of poly(acrylonitrile-co-methyl methacrylate) for moisture-absorbing heat release applications. Fibers and Polymers, 2011, 12, 989-996.	2.1	0
42	Core-sheath polyurethane-carbon nanotube nanofibers prepared by electrospinning. Fibers and Polymers, 2011, 12, 721-726.	2.1	18
43	Synthesis of multi-walled carbon nanotube/polyhedral oligomeric silsesquioxane nanohybrid by utilizing click chemistry. Nanoscale Research Letters, 2011, 6, 122.	5.7	59
44	Functionalization of multiâ€walled carbon nanotubes with poly(εâ€caprolactone) using click chemistry. Journal of Applied Polymer Science, 2011, 119, 31-37.	2.6	23
45	Synthesis of <i>>s</i> à€triazineâ€based hyperbranched polyurethane for novel carbonâ€nanotubeâ€dispersed nanocomposites. Journal of Applied Polymer Science, 2011, 120, 474-483.	2.6	18
46	Cycloaddition Reactions: A Controlled Approach for Carbon Nanotube Functionalization. Chemistry - A European Journal, 2011, 17, 11092-11101.	3.3	62
47	Synthesis of a hybrid assembly composed of titanium dioxide nanoparticles and thin multi-walled carbon nanotubes using "click chemistry― Journal of Colloid and Interface Science, 2011, 358, 471-476.	9.4	43
48	Synthesis and characterization of biocompatible poly(ethylene glycol)-functionalized polyurethane using click chemistry. Polymer Bulletin, 2010, 64, 401-411.	3.3	32
49	Application of shape memory polyurethane in orthodontic. Journal of Materials Science: Materials in Medicine, 2010, 21, 2881-2886.	3.6	80
50	Optically Active Multi-Walled Carbon Nanotubes for Transparent, Conductive Memory-Shape Polyurethane Film. Macromolecules, 2010, 43, 6106-6112.	4.8	81
51	Non-isothermal crystallization of poly(ε-caprolactone)-grafted multi-walled carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1524-1530.	7.6	41
52	Functionalization of carbon nanotubes via Cu(i)-catalyzed Huisgen [3 + 2] cycloaddition "click chemistry― Nanoscale, 2010, 2, 2550.	5.6	50
53	Synthesis and characterization of castorâ€oilâ€modified hyperbranched polyurethanes. Journal of Applied Polymer Science, 2009, 112, 736-743.	2.6	75
54	Siliconeâ€based cholesteric liquid crystalline polymers: Effect of crosslinking agent on phase transition behavior. Journal of Applied Polymer Science, 2009, 114, 3566-3573.	2.6	6

#	Article	IF	CITATIONS
55	Effects of mechanical strain on the electric conductivity of multiwalled carbon nanotube (MWCNT)/polyurethane (PU) composites. Fibers and Polymers, 2009, 10, 71-76.	2.1	19
56	Characterization of castor oil/polycaprolactone polyurethane biocomposites reinforced with hemp fibers. Fibers and Polymers, 2009, 10, 154-160.	2.1	16
57	Enhanced mechanical and dielectric properties of poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 756-760.) 667 Td (fl 2.1	uoride)/polyu 24
58	Synthesis and characterization of polyurethane-based side-chain cholesteric liquid crystal polymers. Fibers and Polymers, 2009, 10, 569-575.	2.1	4
59	Assembly of Gold Nanoparticles on Single-Walled Carbon Nanotubes by Using Click Chemistry. Journal of Nanoscience and Nanotechnology, 2009, 9, 3261-3263.	0.9	20
60	Synthesis and properties of shape memory polyurethane nanocomposites reinforced with poly(É)-caprolactone)-grafted carbon nanotubes. Fibers and Polymers, 2008, 9, 247-254.	2.1	18
61	Shape memory effects of polyurethane block copolymers cross-linked by celite. Fibers and Polymers, 2008, 9, 661-666.	2.1	21
62	Effect of interaction between poly(ethylene terephthalate) and carbon nanotubes on the morphology and properties of their nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 900-910.	2.1	41
63	Thermal stability and molecular interaction of polyurethane nanocomposites prepared by <i>in situ</i> polymerization with functionalized multiwalled carbon nanotubes. Journal of Applied Polymer Science, 2008, 108, 2857-2864.	2.6	38
64	Thermal stability, crystallization behavior, and phase morphology of poly(εâ€ēaprolactone)diolâ€∢i>graftedâ€multiwalled carbon nanotubes. Journal of Applied Polymer Science, 2008, 110, 1550-1558.	2.6	30
65	Electroactive Shape Memory Effect of Polyurethane Composites Filled with Carbon Nanotubes and Conducting Polymer. Materials and Manufacturing Processes, 2007, 22, 419-423.	4.7	104
66	Influence of carbon nanotubes and polypyrrole on the thermal, mechanical and electroactive shape-memory properties of polyurethane nanocomposites. Composites Science and Technology, 2007, 67, 1920-1929.	7.8	199
67	Waterâ€Responsive Shape Memory Polyurethane Block Copolymer Modified with Polyhedral Oligomeric Silsesquioxane. Journal of Macromolecular Science - Physics, 2006, 45, 453-461.	1.0	121
68	Polyurethaneâ€Carbon Nanotube Nanocomposites Prepared by Inâ€Situ Polymerization with Electroactive Shape Memory. Journal of Macromolecular Science - Physics, 2006, 45, 441-451.	1.0	101
69	Polyurethane–silver fibers prepared by infiltration and reduction of silver nitrate. Materials Letters, 2006, 60, 2653-2656.	2.6	47
70	Effect of Functionalized Carbon Nanotubes on Molecular Interaction and Properties of Polyurethane Composites. Macromolecular Chemistry and Physics, 2006, 207, 1773-1780.	2.2	165
71	Polymeric Nanocomposites of Polyurethane Block Copolymers and Functionalized Multi-Walled Carbon Nanotubes as Crosslinkers. Macromolecular Rapid Communications, 2006, 27, 126-131.	3.9	133
72	Electrospun nonwovens of shape-memory polyurethane block copolymers. Journal of Applied Polymer Science, 2005, 96, 460-465.	2.6	103

#	Article	IF	CITATIONS
73	Conducting Shape Memory Polyurethane-Polypyrrole Composites for an Electroactive Actuator. Macromolecular Materials and Engineering, 2005, 290, 1049-1055.	3.6	103
74	Electroactive Shape-Memory Polyurethane Composites Incorporating Carbon Nanotubes. Macromolecular Rapid Communications, 2005, 26, 412-416.	3.9	547
7 5	Crystallization and molecular relaxation of poly(ethylene terephthalate) annealed in supercritical carbon dioxide. Fibers and Polymers, 2005, 6, 284-288.	2.1	2
76	Acid-sensitivity and physical properties of polymethylmethacrylate and polyurethane films containing polymeric styryl dye. Fibers and Polymers, 2004, 5, 239-244.	2.1	5
77	Water vapor permeability and mechanical properties of fabrics coated with shape-memory polyurethane. Journal of Applied Polymer Science, 2004, 92, 2812-2816.	2.6	72
78	Improved mechanical properties of shape-memory polyurethane block copolymers through the control of the soft-segment arrangement. Journal of Applied Polymer Science, 2004, 93, 2410-2415.	2.6	63
79	Vibration control ability of multilayered composite material made of epoxy beam and polyurethane copolymer with shape memory effect. Journal of Applied Polymer Science, 2004, 94, 302-307.	2.6	13
80	Shape memory effect of poly(ethylene terephthalate) and poly(ethylene glycol) copolymer cross-linked with glycerol and sulfoisophthalate group and its application to impact-absorbing composite material. Journal of Applied Polymer Science, 2004, 94, 308-316.	2.6	23
81	Influence of silica on shape memory effect and mechanical properties of polyurethane–silica hybrids. European Polymer Journal, 2004, 40, 1343-1348.	5.4	113
82	Characterization and mechanical properties of prepolymer and polyurethane block copolymer with a shape memory effect. Fibers and Polymers, 2003, 4, 114-118.	2.1	9
83	Dynamic mechanical properties of sandwich-structured epoxy beam composites containing poly(ethyleneterephthalate)/poly(ethyleneglycol) copolymer with shape memory effect. Journal of Applied Polymer Science, 2003, 90, 3141-3149.	2.6	18
84	Electromechanical behavior of hybrid carbon/ g lass fiber composites with tension and bending. Journal of Applied Polymer Science, 2002, 83, 2447-2453.	2.6	21
85	Enhanced dynamic mechanical and shape-memory properties of a poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Ove Polymer Science, 2002, 83, 27-37.	erlock 10 ⁻ 2.6	Tf 50 267 Td (50
86	Crystallization of poly(vinylidene fluoride)-SiO2 hybrid composites prepared by a Sol-gel process. Fibers and Polymers, 2001, 2, 135-140.	2.1	23
87	Aging and cold crystallization of melt-extruded poly(trimethylene terephthalate) films. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 1920-1927.	2.1	16
88	Relationship between electrical resistance and strain of carbon fibers upon loading. Journal of Applied Polymer Science, 2000, 77, 2082-2087.	2.6	24
89	Title is missing!. Journal of Materials Science, 1997, 32, 5371-5376.	3.7	34
90	Thermoreversible gelation of blend of poly(vinylidene fluoride) and poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock Physics, 1996, 34, 1605-1611.	10 Tf 50 6 2.1	57 Td (fluoride 18

#	Article	IF	CITATIONS
91	Mechanical properties of nylon 6 fibers gel-spun from benzyl alcohol solution. Journal of Applied Polymer Science, 1996, 62, 771-778.	2.6	13
92	Dehydrofluorination of a copolymer of vinylidene fluoride and tetrafluoroethylene by phase transfer catalysis reaction. Journal of Polymer Science Part A, 1995, 33, 2109-2112.	2.3	18
93	Cocrystallization and Miscibility in Blends of Vinylidene Fluoride-Tetrafluoroethylene and Vinylidene Fluoride-Hexafluoroacetone Copolymers. Polymer Journal, 1993, 25, 1267-1274.	2.7	13