
## Tiina Sikanen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2772108/publications.pdf Version: 2024-02-01



TUNA SIKANEN

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Cytochrome P450 Inhibition by Antimicrobials and Their Mixtures in Rainbow Trout Liver Microsomes<br>In Vitro. Environmental Toxicology and Chemistry, 2022, 41, 663-676.                                                                   | 4.3  | 9         |
| 2  | Microfluidic oxygen tolerability screening of nanocarriers for triplet fusion photon upconversion.<br>Journal of Materials Chemistry C, 2022, 10, 4871-4877.                                                                                | 5.5  | 4         |
| 3  | Drug glucuronidation assays on human liver microsomes immobilized on microfluidic flow-through reactors. European Journal of Pharmaceutical Sciences, 2021, 158, 105677.                                                                    | 4.0  | 2         |
| 4  | Inkjet-printed flexible silver electrodes on thiol-enes. Sensors and Actuators B: Chemical, 2021, 336, 129727.                                                                                                                              | 7.8  | 8         |
| 5  | The material-enabled oxygen control in thiol-ene microfluidic channels and its feasibility for subcellular drug metabolism assays under hypoxia <i>in vitro</i> . Lab on A Chip, 2021, 21, 1820-1831.                                       | 6.0  | 8         |
| 6  | PeptiCHIP: A Microfluidic Platform for Tumor Antigen Landscape Identification. ACS Nano, 2021, 15, 15992-16010.                                                                                                                             | 14.6 | 17        |
| 7  | Digital Microfluidics-Enabled Analysis of Individual Variation in Liver Cytochrome P450 Activity.<br>Analytical Chemistry, 2020, 92, 14693-14701.                                                                                           | 6.5  | 9         |
| 8  | A Digitalâ€ŧo hannel Microfluidic Interface via Inkjet Printing of Silver and UV Curing of Thiol–Enes.<br>Advanced Materials Technologies, 2020, 5, 2000451.                                                                                | 5.8  | 16        |
| 9  | Cell adhesion and proliferation on common 3D printing materials used in stereolithography of microfluidic devices. Lab on A Chip, 2020, 20, 2372-2382.                                                                                      | 6.0  | 49        |
| 10 | Simultaneous Culturing of Cell Monolayers and Spheroids on a Single Microfluidic Device for<br>Bridging the Gap between 2D and 3D Cell Assays in Drug Research. Advanced Functional Materials,<br>2020, 30, 2000479.                        | 14.9 | 29        |
| 11 | Comparison of liquid chromatography-mass spectrometry and direct infusion microchip electrospray<br>ionization mass spectrometry in global metabolomics of cell samples. European Journal of<br>Pharmaceutical Sciences, 2019, 138, 104991. | 4.0  | 8         |
| 12 | Immobilization of proteolytic enzymes on replica-molded thiol-ene micropillar reactors via thiol-gold interaction. Analytical and Bioanalytical Chemistry, 2019, 411, 2339-2349.                                                            | 3.7  | 22        |
| 13 | Rapid analysis of intraperitoneally administered morphine in mouse plasma and brain by microchip<br>electrophoresis-electrochemical detection. Scientific Reports, 2019, 9, 3311.                                                           | 3.3  | 13        |
| 14 | Metallization of Organically Modified Ceramics for Microfluidic Electrochemical Assays.<br>Micromachines, 2019, 10, 605.                                                                                                                    | 2.9  | 7         |
| 15 | Overcoming the Pitfalls of Cytochrome P450 Immobilization through the Use of Fusogenic Liposomes.<br>Advanced Biology, 2019, 3, 1800245.                                                                                                    | 3.0  | 6         |
| 16 | Interfacing Digital Microfluidics with Ambient Mass Spectrometry Using SU-8 as Dielectric Layer.<br>Micromachines, 2018, 9, 649.                                                                                                            | 2.9  | 9         |
| 17 | Digital microfluidic immobilized cytochrome P450 reactors with integrated inkjet-printed<br>microheaters for droplet-based drug metabolism research. Analytical and Bioanalytical Chemistry,<br>2018, 410, 6677-6687.                       | 3.7  | 14        |
| 18 | Microfluidic Lateral Flow Cytochrome P450 Assay on a Novel Printed Functionalized Calcium<br>Carbonateâ€Based Platform for Rapid Screening of Human Xenobiotic Metabolism. Advanced Functional<br>Materials, 2018, 28, 1802793.             | 14.9 | 15        |

TIINA SIKANEN

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Core/Shell Nanocomposites Produced by Superfast Sequential Microfluidic Nanoprecipitation. Nano<br>Letters, 2017, 17, 606-614.                                                                                                         | 9.1  | 123       |
| 20 | Thiol–ene micropillar array electrospray ionization platform for zeptomole level bioanalysis.<br>Analyst, The, 2017, 142, 2552-2557.                                                                                                   | 3.5  | 5         |
| 21 | Fabrication of concave micromirrors for single cell imaging <i>via</i> controlled over-exposure of organically modified ceramics in single step lithography. Biomicrofluidics, 2017, 11, 034118.                                       | 2.4  | 6         |
| 22 | The impact of porous silicon nanoparticles on human cytochrome P450 metabolism in human liver microsomes in vitro. European Journal of Pharmaceutical Sciences, 2017, 104, 124-132.                                                    | 4.0  | 11        |
| 23 | Aqueous and non-aqueous microchip electrophoresis with on-chip electrospray ionization mass<br>spectrometry on replica-molded thiol-ene microfluidic devices. Journal of Chromatography A, 2017,<br>1496, 150-156.                     | 3.7  | 18        |
| 24 | TiO <sub>2</sub> Photocatalysis–DESI-MS Rotating Array Platform for High-Throughput Investigation of Oxidation Reactions. Analytical Chemistry, 2017, 89, 11214-11218.                                                                 | 6.5  | 7         |
| 25 | Inkjet printed silver electrodes on macroporous paper for a paper-based isoelectric focusing device.<br>Biomicrofluidics, 2016, 10, 064120.                                                                                            | 2.4  | 18        |
| 26 | Oxidation of Tyrosine-Phosphopeptides by Titanium Dioxide Photocatalysis. Journal of the American<br>Chemical Society, 2016, 138, 7452-7455.                                                                                           | 13.7 | 23        |
| 27 | Comparison of TiO2 photocatalysis, electrochemically assisted Fenton reaction and direct<br>electrochemistry for simulation of phase I metabolism reactions of drugs. European Journal of<br>Pharmaceutical Sciences, 2016, 83, 36-44. | 4.0  | 29        |
| 28 | Rapid separation of phosphopeptides by microchip electrophoresis–electrospray ionization mass spectrometry. Journal of Chromatography A, 2016, 1440, 249-254.                                                                          | 3.7  | 15        |
| 29 | A Versatile and Robust Microfluidic Platform Toward High Throughput Synthesis of Homogeneous<br>Nanoparticles with Tunable Properties. Advanced Materials, 2015, 27, 2298-2304.                                                        | 21.0 | 203       |
| 30 | Interfacing microchip isoelectric focusing with on-chip electrospray ionization mass spectrometry.<br>Journal of Chromatography A, 2015, 1398, 121-126.                                                                                | 3.7  | 13        |
| 31 | Simple Microfluidic Approach to Fabricate Monodisperse Hollow Microparticles for Multidrug<br>Delivery. ACS Applied Materials & Interfaces, 2015, 7, 14822-14832.                                                                      | 8.0  | 66        |
| 32 | Thiol-ene microfluidic devices for microchip electrophoresis: Effects of curing conditions and monomer composition on surface properties. Journal of Chromatography A, 2015, 1426, 233-240.                                            | 3.7  | 21        |
| 33 | Laser Direct Writing of Thick Hybrid Polymers for Microfluidic Chips. Micromachines, 2014, 5, 472-485.                                                                                                                                 | 2.9  | 21        |
| 34 | Imitation of phase I oxidative metabolism of anabolic steroids by titanium dioxide photocatalysis.<br>European Journal of Pharmaceutical Sciences, 2014, 65, 45-55.                                                                    | 4.0  | 15        |
| 35 | Fabrication and bonding of thiol-ene-based microfluidic devices. Journal of Micromechanics and Microengineering, 2013, 23, 037002.                                                                                                     | 2.6  | 40        |
| 36 | Microchip capillary electrophoresis–electrospray ionization–mass spectrometry of intact proteins<br>using uncoated Ormocomp microchips. Analytica Chimica Acta, 2012, 711, 69-76.                                                      | 5.4  | 42        |

TIINA SIKANEN

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Rapid and sensitive drug metabolism studies by SU-8 microchip capillary electrophoresis-electrospray ionization mass spectrometry. Journal of Chromatography A, 2011, 1218, 739-745.                      | 3.7 | 48        |
| 38 | Dynamic coating of SUâ€8 microfluidic chips with phospholipid disks. Electrophoresis, 2010, 31, 2566-2574.                                                                                                | 2.4 | 11        |
| 39 | Feasibility of SUâ€8â€based capillary electrophoresisâ€electrospray ionization mass spectrometry microfluidic chips for the analysis of human cell lysates. Electrophoresis, 2010, 31, 3745-3753.         | 2.4 | 27        |
| 40 | Implementation of droplet-membrane-droplet liquid-phase microextraction under stagnant conditions for lab-on-a-chip applications. Analytica Chimica Acta, 2010, 658, 133-140.                             | 5.4 | 47        |
| 41 | Nanoperforated silicon membranes fabricated by UV-nanoimprint lithography, deep reactive ion<br>etching and atomic layer deposition. Journal of Micromechanics and Microengineering, 2010, 20,<br>077001. | 2.6 | 19        |
| 42 | Hybrid Ceramic Polymers: New, Nonbiofouling, and Optically Transparent Materials for Microfluidics.<br>Analytical Chemistry, 2010, 82, 3874-3882.                                                         | 6.5 | 30        |
| 43 | Microchip technology in mass spectrometry. Mass Spectrometry Reviews, 2009, 29, n/a-n/a.                                                                                                                  | 5.4 | 94        |
| 44 | Temperature modeling and measurement of an electrokinetic separation chip. Microfluidics and Nanofluidics, 2008, 5, 479-491.                                                                              | 2.2 | 12        |
| 45 | Analytical characterization of microfabricated SUâ€8 emitters for electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 2008, 43, 726-735.                                             | 1.6 | 18        |
| 46 | Fabrication and fluidic characterization of silicon micropillar array electrospray ionization chip.<br>Sensors and Actuators B: Chemical, 2008, 132, 380-387.                                             | 7.8 | 44        |
| 47 | Novel hybrid material for microfluidic devices. Sensors and Actuators B: Chemical, 2008, 132, 397-403.                                                                                                    | 7.8 | 24        |
| 48 | Microchip-based CE-ESI/MS analysis of biological molecules. European Journal of Pharmaceutical Sciences, 2008, 34, S37.                                                                                   | 4.0 | 0         |
| 49 | High Sensitivity Micropillar Electrosprayionization Chip Fabricated of Silicon. , 2007, , .                                                                                                               |     | 1         |
| 50 | Performance of SU-8 Microchips as Separation Devices and Comparison with Glass Microchips.<br>Analytical Chemistry, 2007, 79, 6255-6263.                                                                  | 6.5 | 36        |
| 51 | Fully Microfabricated and Integrated SU-8-Based Capillary Electrophoresis-Electrospray Ionization Microchips for Mass Spectrometry. Analytical Chemistry, 2007, 79, 9135-9144.                            | 6.5 | 56        |
| 52 | Silicon micropillar array electrospray chip for drug and biomolecule analysis. Rapid Communications in Mass Spectrometry, 2007, 21, 3677-3682.                                                            | 1.5 | 43        |
| 53 | Re-usable multi-inlet PDMS fluidic connector. Sensors and Actuators B: Chemical, 2006, 114, 552-557.                                                                                                      | 7.8 | 50        |
| 54 | Fabrication of enclosed SU-8 tips for electrospray ionization-mass spectrometry. Electrophoresis, 2005, 26, 4691-4702.                                                                                    | 2.4 | 42        |

| #  | Article                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Fabrication of porous membrane filter from p-type silicon. Physica Status Solidi (A) Applications and<br>Materials Science, 2005, 202, 1624-1628. | 1.8 | 19        |
| 56 | Characterization of SU-8 for electrokinetic microfluidic applications. Lab on A Chip, 2005, 5, 888.                                               | 6.0 | 93        |