Raymond W M Kwong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2770585/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Early developmental exposure to bisphenol A and bisphenol S disrupts socio-cognitive function, isotocin equilibrium, and excitation-inhibition balance in developing zebrafish. NeuroToxicology, 2022, 88, 144-154.	3.0	11
2	Toxicological assessment of cadmium-containing quantum dots in developing zebrafish: Physiological performance and neurobehavioral responses. Aquatic Toxicology, 2022, 247, 106157.	4.0	5
3	Straw return enhances the risks of metals in soil?. Ecotoxicology and Environmental Safety, 2021, 207, 111201.	6.0	42
4	Respiratory responses to external ammonia in zebrafish (Danio rerio). Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2021, 251, 110822.	1.8	6
5	Use of a carbonic anhydrase Ca17a knockout to investigate mechanisms of ion uptake in zebrafish (<i>Danio rerio</i>). American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R55-R68.	1.8	6
6	A comprehensive review on the neuropathophysiology of selenium. Science of the Total Environment, 2021, 767, 144329.	8.0	33
7	Influence of Microplastics on the Mobility, Bioavailability, and Toxicity of Heavy Metals: A Review. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 710-721.	2.7	47
8	Understanding the effects of sulfur input on mercury methylation in rice paddy soils. Science of the Total Environment, 2021, 778, 146325.	8.0	26
9	How do humans recognize and face challenges of microplastic pollution in marine environments? A bibliometric analysis. Environmental Pollution, 2021, 280, 116959.	7.5	24
10	Algal Organic Matter Drives Methanogen-Mediated Methylmercury Production in Water from Eutrophic Shallow Lakes. Environmental Science & Technology, 2021, 55, 10811-10820.	10.0	40
11	Using zebrafish as a model to assess the individual and combined effects of sub-lethal waterborne and dietary zinc exposure during development. Environmental Pollution, 2021, 284, 117377.	7.5	7
12	Functional significance and physiological regulation of essential trace metals in fish. Journal of Experimental Biology, 2021, 224, .	1.7	10
13	A critical insight into the development, regulation and future prospects of biofuels in Canada. Bioengineered, 2021, 12, 9847-9859.	3.2	8
14	Reassessing the contribution of the Na+/H+ exchanger Nhe3b to Na+ uptake in zebrafish (<i>Danio) Tj ETQq0 0 (</i>) rgBT /Ov	erlock 10 Tf !
15	Cadmium exposure reduces the density of a specific ionocyte subtype in developing zebrafish. Chemosphere, 2020, 244, 125535.	8.2	6
16	The neurophysiological effects of iron in early life stages of zebrafish. Environmental Pollution, 2020, 267, 115625.	7.5	12

17	A comprehensive review of the neurobehavioral effects of bisphenol S and the mechanisms of action: New insights from in vitro and in vivo models. Environment International, 2020, 145, 106078.	10.0	30
18	Regulation of metal homeostasis and zinc transporters in early-life stage zebrafish following	4.0	17

ig 18 sublethal waterborne zinc exposure. Aquatic Toxicology, 2020, 225, 105524.

RAYMOND W M KWONG

#	Article	IF	CITATIONS
19	Influence of dietary iron exposure on trace metal homeostasis and expression of metal transporters during development in zebrafishâ~†. Environmental Pollution, 2020, 261, 114159.	7.5	10
20	The sensory-motor responses to environmental acidosis in larval zebrafish: Influences of neurotransmitter and water chemistry. Chemosphere, 2019, 235, 383-390.	8.2	8
21	Loss-of-function approaches in comparative physiology: is there a future for knockdown experiments in the era of genome editing?. Journal of Experimental Biology, 2019, 222, .	1.7	47
22	Zebrafish as a Model System for Investigating the Compensatory Regulation of Ionic Balance during Metabolic Acidosis. International Journal of Molecular Sciences, 2018, 19, 1087.	4.1	17
23	Assessing the role of the acid-sensing ion channel ASIC4b in sodium uptake by larval zebrafish. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2018, 226, 1-10.	1.8	15
24	A role for sodium-chloride cotransporters in the rapid regulation of ion uptake following acute environmental acidosis: new insights from the zebrafish model. American Journal of Physiology - Cell Physiology, 2016, 311, C931-C941.	4.6	17
25	Inhibition of calcium uptake during hypoxia in developing zebrafish, Danio rerio, is mediated by hypoxia-inducible factor. Journal of Experimental Biology, 2016, 219, 3988-3995.	1.7	5
26	Neuroendocrine control of ionic balance in zebrafish. General and Comparative Endocrinology, 2016, 234, 40-46.	1.8	22
27	An emerging role for gasotransmitters in the control of breathing and ionic regulation in fish. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2016, 186, 145-159.	1.5	19
28	The water channel aquaporin-1a1 facilitates movement of CO2 and ammonia in zebrafish (<i>Danio) Tj ETQq0</i>	0 0 rgBT /C 1.7	Overlock 10 Tf
29	Hydrogen sulfide promotes calcium uptake in larval zebrafish. American Journal of Physiology - Cell Physiology, 2015, 309, C60-C69.	4.6	12
30	Nitrogenous Waste Handling by Larval Zebrafish <i>Danio rerio</i> in Alkaline Water. Physiological and Biochemical Zoology, 2015, 88, 137-145.	1.5	10
31	An Essential Role for Parathyroid Hormone in Gill Formation and Differentiation of Ion-Transporting Cells in Developing Zebrafish. Endocrinology, 2015, 156, 2384-2394.	2.8	24
32	A role for nitric oxide in the control of breathing in zebrafish (<i>Danio rerio</i>). Journal of Experimental Biology, 2015, 218, 3746-53.	1.7	43
33	A role for transcription factor glial cell missing 2 in Ca2+ homeostasis in zebrafish, Danio rerio. Pflugers Archiv European Journal of Physiology, 2015, 467, 753-765.	2.8	19
34	Hydrogen sulfide inhibits Na+ uptake in larval zebrafish, Danio rerio. Pflugers Archiv European Journal of Physiology, 2015, 467, 651-664.	2.8	11
35	The role of cAMP-mediated intracellular signaling in regulating Na+ uptake in zebrafish larvae. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R51-R60.	1.8	9
36	The physiology of fish at low pH: the zebrafish as a model system. Journal of Experimental Biology, 2014, 217, 651-662.	1.7	101

#	Article	IF	CITATIONS
37	The role of hydrogen sulphide in the control of breathing in hypoxic zebrafish (<i>Danio rerio</i>). Journal of Physiology, 2014, 592, 3075-3088.	2.9	51
38	Involvement of the calcium-sensing receptor in calcium homeostasis in larval zebrafish exposed to low environmental calcium. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R211-R221.	1.8	28
39	Effects of elevated dietary iron on the gastrointestinal expression of Nramp genes and iron homeostasis in rainbow trout (Oncorhynchus mykiss). Fish Physiology and Biochemistry, 2013, 39, 363-372.	2.3	14
40	Evidence for a role of tight junctions in regulating sodium permeability in zebrafish (Danio rerio) acclimated to ion-poor water. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2013, 183, 203-213.	1.5	26
41	Cortisol regulates epithelial permeability and sodium losses in zebrafish exposed to acidic water. Journal of Endocrinology, 2013, 217, 253-264.	2.6	37
42	The tight junction protein claudin-b regulates epithelial permeability and sodium handling in larval zebrafish, <i>Danio rerio</i> . American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R504-R513.	1.8	37
43	The Role of Aquaporin and Tight Junction Proteins in the Regulation of Water Movement in Larval Zebrafish (Danio rerio). PLoS ONE, 2013, 8, e70764.	2.5	19
44	Transport of selenium across the plasma membrane of primary hepatocytes and enterocytes of rainbow trout. Journal of Experimental Biology, 2012, 215, 1491-1501.	1.7	23
45	Cadmium transport in isolated enterocytes of freshwater rainbow trout: Interactions with zinc and iron, effects of complexation with cysteine, and an ATPase-coupled efflux. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2012, 155, 238-246.	2.6	5
46	Effects of dietary cadmium exposure on tissue-specific cadmium accumulation, iron status and expression of iron-handling and stress-inducible genes in rainbow trout: Influence of elevated dietary iron. Aquatic Toxicology, 2011, 102, 1-9.	4.0	38
47	Molecular evidence and physiological characterization of iron absorption in isolated enterocytes of rainbow trout (Oncorhynchus mykiss): Implications for dietary cadmium and lead absorption. Aquatic Toxicology, 2010, 99, 343-350.	4.0	22
48	Biokinetics and biotransformation of DDTs in the marine green mussels Perna viridis. Aquatic Toxicology, 2009, 93, 196-204.	4.0	22
49	The interactions of iron with other divalent metals in the intestinal tract of a freshwater teleost, rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2009, 150, 442-449.	2.6	30
50	An in vitro examination of intestinal iron absorption in a freshwater teleost, rainbow trout (Oncorhynchus mykiss). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2008, 178, 963-975.	1.5	20
51	Uptake, elimination, and biotransformation of aqueous and dietary DDT in marine fish. Environmental Toxicology and Chemistry, 2008, 27, 2053-2063.	4.3	36
52	Biokinetics of paralytic shellfish toxins in the green-lipped mussel, Perna viridis. Marine Pollution Bulletin, 2007, 54, 1068-1071.	5.0	16
53	The uptake, distribution and elimination of paralytic shellfish toxins in mussels and fish exposed to to to toxic dinoflagellates. Aquatic Toxicology, 2006, 80, 82-91.	4.0	73