
Michael C Whitlock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2769279/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The immediate costs and longâ€ŧerm benefits of assisted gene flow in large populations. Conservation Biology, 2022, 36, e13911.	4.7	18
2	Using genetic relatedness to understand heterogeneous distributions of urban ratâ€associated pathogens. Evolutionary Applications, 2021, 14, 198-209.	3.1	11
3	Clobal adaptation complicates the interpretation of genome scans for local adaptation. Evolution Letters, 2021, 5, 4-15.	3.3	29
4	Growth genes are implicated in the evolutionary divergence of sympatric piscivorous and insectivorous rainbow trout (Oncorhynchus mykiss). Bmc Ecology and Evolution, 2021, 21, 63.	1.6	2
5	Plasticity via feedback reduces the cost of developmental instability. Evolution Letters, 2020, 4, 570-580.	3.3	10
6	Variation in recombination rate affects detection of outliers in genome scans under neutrality. Molecular Ecology, 2020, 29, 4274-4279.	3.9	59
7	Background selection and <i>F</i> _{ST} : Consequences for detecting local adaptation. Molecular Ecology, 2019, 28, 3902-3914.	3.9	68
8	No evidence of positive assortative mating for genetic quality in fruit flies. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191474.	2.6	3
9	Quantifying how constraints limit the diversity of viable routes to adaptation. PLoS Genetics, 2018, 14, e1007717.	3.5	78
10	Environmental stress does not increase the mean strength of selection. Journal of Evolutionary Biology, 2018, 31, 1599-1606.	1.7	6
11	Local Adaptation Interacts with Expansion Load during Range Expansion: Maladaptation Reduces Expansion Load. American Naturalist, 2017, 189, 368-380.	2.1	88
12	The genetics of adaptation to discrete heterogeneous environments: frequent mutation or largeâ€effect alleles can allow range expansion. Journal of Evolutionary Biology, 2017, 30, 591-602.	1.7	22
13	Bioinformatically predicted deleterious mutations reveal complementation in the interior spruce hybrid complex. BMC Genomics, 2017, 18, 970.	2.8	16
14	Convergent local adaptation to climate in distantly related conifers. Science, 2016, 353, 1431-1433.	12.6	303
15	Finding the Genomic Basis of Local Adaptation: Pitfalls, Practical Solutions, and Future Directions. American Naturalist, 2016, 188, 379-397.	2.1	663
16	A Balanced Data Archiving Policy for Long-Term Studies. Trends in Ecology and Evolution, 2016, 31, 84-85.	8.7	17
17	A clever solution to a vexing problem. Molecular Ecology, 2015, 24, 3513-3514.	3.9	2
18	Evaluating methods for estimating local effective population size with and without migration. Evolution; International Journal of Organic Evolution, 2015, 69, 2154-2166.	2.3	143

#	Article	IF	CITATIONS
19	Robustness to noise in gene expression evolves despite epistatic constraints in a model of gene networks. Evolution; International Journal of Organic Evolution, 2015, 69, 2345-2358.	2.3	20
20	Overdominance interacts with linkage to determine the rate of adaptation to a new optimum. Journal of Evolutionary Biology, 2015, 28, 95-104.	1.7	7
21	The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Molecular Ecology, 2015, 24, 1031-1046.	3.9	447
22	<i>Q</i> _{ST} – <i>F</i> _{ST} comparisons with unbalanced halfâ€sib designs. Molecular Ecology Resources, 2015, 15, 262-267.	4.8	38
23	Patterns of genetic variation within and among populations in Arbutus unedo and its relation with selection and evolvability. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 185-192.	2.7	16
24	Modern Approaches to Local Adaptation. American Naturalist, 2015, 186, S1-S4.	2.1	44
25	Reliable Detection of Loci Responsible for Local Adaptation: Inference of a Null Model through Trimming the Distribution of <i>F</i> _{ST} . American Naturalist, 2015, 186, S24-S36.	2.1	375
26	Evaluation of demographic history and neutral parameterization on the performance of <scp><i>F</i>_{ST}</scp> outlier tests. Molecular Ecology, 2014, 23, 2178-2192.	3.9	472
27	Assisted Gene Flow to Facilitate Local Adaptation to Climate Change. Annual Review of Ecology, Evolution, and Systematics, 2013, 44, 367-388.	8.3	708
28	Dietary stress does not strengthen selection against single deleterious mutations in Drosophila melanogaster. Heredity, 2012, 108, 203-210.	2.6	17
29	Mutation Load: The Fitness of Individuals in Populations Where Deleterious Alleles Are Abundant. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 115-135.	8.3	163
30	Multilocus estimation of selfing and its heritability. Heredity, 2012, 109, 173-179.	2.6	4
31	Experimental evolution. Trends in Ecology and Evolution, 2012, 27, 547-560.	8.7	631
32	The value of complementary approaches in evolutionary research: reply to Magalhães and Matos. Trends in Ecology and Evolution, 2012, 27, 650-651.	8.7	9
33	<i>Q</i> _{ST} in a hierarchically structured population. Molecular Ecology Resources, 2012, 12, 481-483.	4.8	31
34	PHENOTYPIC PLASTICITY FACILITATES MUTATIONAL VARIANCE, GENETIC VARIANCE, AND EVOLVABILITY ALONG THE MAJOR AXIS OF ENVIRONMENTAL VARIATION. Evolution; International Journal of Organic Evolution, 2012, 66, 2891-2902.	2.3	172
35	Data archiving in ecology and evolution: best practices. Trends in Ecology and Evolution, 2011, 26, 61-65.	8.7	208
36	and <i>D</i> do not replace <i>F</i> _{ST} . Molecular Ecology, 2011, 20, 1083-1091.	3.9	274

#	Article	IF	CITATIONS
37	THE GENETIC ARCHITECTURE OF ADAPTATION UNDER MIGRATION-SELECTION BALANCE. Evolution; International Journal of Organic Evolution, 2011, 65, 1897-1911.	2.3	514
38	Data archiving is a good investment. Nature, 2011, 473, 285-285.	27.8	72
39	Inferences About the Distribution of Dominance Drawn From Yeast Gene Knockout Data. Genetics, 2011, 187, 553-566.	2.9	186
40	DATA ARCHIVING. Evolution; International Journal of Organic Evolution, 2010, 64, 603-604.	2.3	20
41	NO EFFECT OF ENVIRONMENTAL HETEROGENEITY ON THE MAINTENANCE OF GENETIC VARIATION IN WING SHAPE IN DROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2010, 64, 3398-3408.	2.3	47
42	The need for archiving data in evolutionary biology. Journal of Evolutionary Biology, 2010, 23, 659-660.	1.7	22
43	Local adaptation does not always predict high mating success. Journal of Evolutionary Biology, 2010, 23, 875-878.	1.7	12
44	Data Archiving. American Naturalist, 2010, 175, 145-146.	2.1	150
45	Environmental duress and epistasis: how does stress affect the strength of selection on new mutations?. Trends in Ecology and Evolution, 2010, 25, 450-458.	8.7	127
46	Sexual selection against deleterious mutations via variable male search success. Biology Letters, 2009, 5, 795-797.	2.3	36
47	Compensatory mutations are repeatable and clustered within proteins. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1823-1827.	2.6	59
48	Testing for Spatially Divergent Selection: Comparing <i>Q</i> ST to <i>F</i> ST. Genetics, 2009, 183, 1055-1063.	2.9	164
49	The impact of epistatic selection on the genomic traces of selection. Molecular Ecology, 2009, 18, 4985-4987.	3.9	6
50	PURGING THE GENOME WITH SEXUAL SELECTION: REDUCING MUTATION LOAD THROUGH SELECTION ON MALES. Evolution; International Journal of Organic Evolution, 2009, 63, 569-582.	2.3	234
51	Evolutionary inference from <i>Q</i> _{ST} . Molecular Ecology, 2008, 17, 1885-1896.	3.9	357
52	The costs and benefits of resource sharing: reciprocity requires resource heterogeneity. Journal of Evolutionary Biology, 2007, 20, 1772-1782.	1.7	15
53	EFFECTS OF MIGRATION ON THE GENETIC COVARIANCE MATRIX. Evolution; International Journal of Organic Evolution, 2007, 61, 2398-2409.	2.3	97
54	Response to Comment on "Ongoing Adaptive Evolution of ASPM, a Brain Size Determinant in Homo sapiens" and "Microcephalin, a Gene Regulating Brain Size, Continues to Evolve Adaptively in Humans". Science, 2006, 313, 172b-172b.	12.6	51

#	Article	IF	CITATIONS
55	Male Drosophila melanogaster have higher mating success when adapted to their thermal environment. Journal of Evolutionary Biology, 2006, 19, 1894-1900.	1.7	44
56	Combining probability from independent tests: the weighted Z-method is superior to Fisher's approach. Journal of Evolutionary Biology, 2005, 18, 1368-1373.	1.7	681
57	Probability of Fixation in a Heterogeneous Environment. Genetics, 2005, 171, 1407-1417.	2.9	63
58	Selection and Drift in Metapopulations. , 2004, , 153-173.		76
59	The incomplete natural history of mitochondria. Molecular Ecology, 2004, 13, 729-744.	3.9	1,767
60	Genetic recombination and adaptation to fluctuating environments: selection for geotaxis in Drosophila melanogaster. Heredity, 2003, 91, 78-84.	2.6	16
61	PERSPECTIVE: EVOLUTION AND DETECTION OF GENETIC ROBUSTNESS. Evolution; International Journal of Organic Evolution, 2003, 57, 1959-1972.	2.3	504
62	PERSPECTIVE:EVOLUTION AND DETECTION OF GENETIC ROBUSTNESS. Evolution; International Journal of Organic Evolution, 2003, 57, 1959.	2.3	467
63	Estimating Effective Population Size and Migration Rates From Genetic Samples Over Space and Time. Genetics, 2003, 163, 429-446.	2.9	378
64	Fixation Probability and Time in Subdivided Populations. Genetics, 2003, 164, 767-779.	2.9	242
65	The Genetics of Adaptation: The Roles of Pleiotropy, Stabilizing Selection and Drift in Shaping the Distribution of Bidirectional Fixed Mutational Effects. Genetics, 2003, 165, 2181-2192.	2.9	44
66	ECOLOGY: Inbreeding and Metapopulations. Science, 2002, 295, 454-455.	12.6	18
67	PERSISTENCE OF CHANGES IN THE GENETIC COVARIANCE MATRIX AFTER A BOTTLENECK. Evolution; International Journal of Organic Evolution, 2002, 56, 1968.	2.3	19
68	Environmental stress, inbreeding, and the nature of phenotypic and genetic variance inDrosophila melanogaster. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 677-683.	2.6	37
69	PERSISTENCE OF CHANGES IN THE GENETIC COVARIANCE MATRIX AFTER A BOTTLENECK. Evolution; International Journal of Organic Evolution, 2002, 56, 1968-1975.	2.3	57
70	Selection, Load and Inbreeding Depression in a Large Metapopulation. Genetics, 2002, 160, 1191-1202.	2.9	178
71	A GENETIC INTERPRETATION OF ECOLOGICALLY DEPENDENT ISOLATION. Evolution; International Journal of Organic Evolution, 2001, 55, 198-201.	2.3	161
72	A GENETIC INTERPRETATION OF ECOLOGICALLY DEPENDENT ISOLATION. Evolution; International Journal of Organic Evolution, 2001, 55, 198.	2.3	7

#	Article	IF	CITATIONS
73	Inbreeding Changes the Shape of the Genetic Covariance Matrix in <i>Drosophila melanogaster</i> . Genetics, 2001, 158, 1137-1145.	2.9	156
74	Local drift load and the heterosis of interconnected populations. Heredity, 2000, 84, 452-457.	2.6	240
75	FACTORS AFFECTING THE GENETIC LOAD IN DROSOPHILA: SYNERGISTIC EPISTASIS AND CORRELATIONS AMONG FITNESS COMPONENTS. Evolution; International Journal of Organic Evolution, 2000, 54, 1654-1660.	2.3	127
76	FIXATION OF NEW ALLELES AND THE EXTINCTION OF SMALL POPULATIONS: DRIFT LOAD, BENEFICIAL ALLELES, AND SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 2000, 54, 1855-1861.	2.3	268
77	FACTORS AFFECTING THE GENETIC LOAD IN DROSOPHILA: SYNERGISTIC EPISTASIS AND CORRELATIONS AMONG FITNESS COMPONENTS. Evolution; International Journal of Organic Evolution, 2000, 54, 1654.	2.3	29
78	Heterosis increases the effective migration rate. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 1321-1326.	2.6	107
79	The exquisite corpse: a shifting view of the shifting balance. Trends in Ecology and Evolution, 2000, 15, 347-348.	8.7	59
80	Experimental Tests of Founder-Flush: A Reply to Templeton. Evolution; International Journal of Organic Evolution, 1999, 53, 1632.	2.3	4
81	The Distribution of Phenotypic Variance with Inbreeding. Evolution; International Journal of Organic Evolution, 1999, 53, 1143.	2.3	26
82	The variance in inbreeding depression and the recovery of fitness in bottlenecked populations. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 2061-2066.	2.6	74
83	Indirect measures of gene flow and migration: FSTâ‰1/(4Nm+1). Heredity, 1999, 82, 117-125.	2.6	1,408
84	The panda and the phage: compensatory mutations and the persistence of small populations. Trends in Ecology and Evolution, 1999, 14, 295-296.	8.7	25
85	The Effects of Selection and Bottlenecks on Male Mating Success in Peripheral Isolates. American Naturalist, 1999, 153, 437-444.	2.1	35
86	THE DISTRIBUTION OF PHENOTYPIC VARIANCE WITH INBREEDING. Evolution; International Journal of Organic Evolution, 1999, 53, 1143-1156.	2.3	61
87	EXPERIMENTAL TESTS OF FOUNDER-FLUSH: A REPLY TO TEMPLETON. Evolution; International Journal of Organic Evolution, 1999, 53, 1632-1633.	2.3	4
88	Neutral additive genetic variance in a metapopulation. Genetical Research, 1999, 74, 215-221.	0.9	164
89	The Changes in Genetic and Environmental Variance With Inbreeding in Drosophila melanogaster. Genetics, 1999, 152, 345-353.	2.9	134
90	SINGLE FOUNDER-FLUSH EVENTS AND THE EVOLUTION OF REPRODUCTIVE ISOLATION. Evolution; International Journal of Organic Evolution, 1998, 52, 1850-1855.	2.3	26

#	Article	IF	CITATIONS
91	Founder Effects and Peak Shifts Without Genetic Drift: Adaptive Peak Shifts Occur Easily When Environments Fluctuate Slightly. Evolution; International Journal of Organic Evolution, 1997, 51, 1044.	2.3	37
92	The Evolution of Metapopulations. , 1997, , 183-210.		121
93	FOUNDER EFFECTS AND PEAK SHIFTS WITHOUT GENETIC DRIFT: ADAPTIVE PEAK SHIFTS OCCUR EASILY WHEN ENVIRONMENTS FLUCTUATE SLIGHTLY. Evolution; International Journal of Organic Evolution, 1997, 51, 1044-1048.	2.3	44
94	The Effective Size of a Subdivided Population. Genetics, 1997, 146, 427-441.	2.9	421
95	The Probability of Fixation in Populations of Changing Size. Genetics, 1997, 146, 723-733.	2.9	293
96	THE DISTRIBUTION AMONG POPULATIONS IN PHENOTYPIC VARIANCE WITH INBREEDING. Evolution; International Journal of Organic Evolution, 1996, 50, 1919-1926.	2.3	24
97	The Red Queen Beats the Jack-Of-All-Trades: The Limitations on the Evolution of Phenotypic Plasticity and Niche Breadth. American Naturalist, 1996, 148, S65-S77.	2.1	327
98	The Distribution Among Populations in Phenotypic Variance with Inbreeding. Evolution; International Journal of Organic Evolution, 1996, 50, 1919.	2.3	10
99	VARIANCE-INDUCED PEAK SHIFTS. Evolution; International Journal of Organic Evolution, 1995, 49, 252-259.	2.3	54
100	Speciation: Founder Events and Their Effects on X-Linked and Autosomal Genes. American Naturalist, 1995, 145, 676-685.	2.1	25
101	Variance-Induced Peak Shifts. Evolution; International Journal of Organic Evolution, 1995, 49, 252.	2.3	33
102	Multiple Fitness Peaks and Epistasis. Annual Review of Ecology, Evolution, and Systematics, 1995, 26, 601-629.	6.7	378
103	Two-Locus Drift with Sex-Chromosomes: The Partitioning and Conversion of Variance in Subdivided Populations. Theoretical Population Biology, 1995, 48, 44-64.	1.1	19
104	Fluctuating asymmetry does not increase with moderate inbreeding in Drosophila melanogaster. Heredity, 1994, 73, 373-376.	2.6	99
105	Fission and the Genetic Variance Among Populations: The Changing Demorgraphy of Forked Fungus Beetle Populations. American Naturalist, 1994, 143, 820-829.	2.1	11
106	Lack of correlation between heterozygosity and fitness in forked fungus beetles. Heredity, 1993, 70, 574-581.	2.6	55
107	Gene Interaction Affects the Additive Genetic Variance in Subdivided Populations with Migration and Extinction. Evolution; International Journal of Organic Evolution, 1993, 47, 1758.	2.3	26
108	GENE INTERACTION AFFECTS THE ADDITIVE GENETIC VARIANCE IN SUBDIVIDED POPULATIONS WITH MIGRATION AND EXTINCTION. Evolution; International Journal of Organic Evolution, 1993, 47, 1758-1769.	2.3	72

#	Article	IF	CITATIONS
109	Temporal Fluctuations in Demographic Parameters and the Genetic Variance among Populations. Evolution; International Journal of Organic Evolution, 1992, 46, 608.	2.3	103
110	Nonequilibrium Population Structure in Forked Fungus Beetles: Extinction, Colonization, and the Genetic Variance Among Populations. American Naturalist, 1992, 139, 952-970.	2.1	138
111	TEMPORAL FLUCTUATIONS IN DEMOGRAPHIC PARAMETERS AND THE GENETIC VARIANCE AMONG POPULATIONS. Evolution; International Journal of Organic Evolution, 1992, 46, 608-615.	2.3	136
112	SOME POPULATION GENETIC CONSEQUENCES OF COLONY FORMATION AND EXTINCTION: GENETIC CORRELATIONS WITHIN FOUNDING GROUPS. Evolution; International Journal of Organic Evolution, 1990, 44, 1717-1724.	2.3	415
113	Some Population Genetic Consequences of Colony Formation and Extinction: Genetic Correlations within Founding Groups. Evolution; International Journal of Organic Evolution, 1990, 44, 1717.	2.3	150