
Richard A Hogg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2769052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nature Photonics, 2011, 5, 416-419.	31.4	344
2	Detection of single photons using a field-effect transistor gated by a layer of quantum dots. Applied Physics Letters, 2000, 76, 3673-3675.	3.3	142
3	High-performance three-layer 1.3-/spl mu/m InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents. IEEE Photonics Technology Letters, 2005, 17, 1139-1141.	2.5	136
4	Structural and optical properties of type II GaSb/GaAs self-assembled quantum dots grown by molecular beam epitaxy. Journal of Applied Physics, 1999, 85, 8349-8352.	2.5	128
5	Long-wavelength light emission and lasing from InAsâ^•GaAs quantum dots covered by a GaAsSb strain-reducing layer. Applied Physics Letters, 2005, 86, 143108.	3.3	120
6	Self-assembled quantum-dot superluminescent light-emitting diodes. Advances in Optics and Photonics, 2010, 2, 201.	25.5	93
7	p-doped 1.3μm InAsâ^•GaAs quantum-dot laser with a low threshold current density and high differential efficiency. Applied Physics Letters, 2006, 89, 073113.	3.3	87
8	Photoluminescence, photoluminescence excitation, and resonant Raman spectroscopy of disordered and ordered Ga0.52In0.48P. Journal of Applied Physics, 1993, 73, 5163-5172.	2.5	81
9	Tailoring of internal fields in InGaAs/GaAs multiwell structures grown on (111)B GaAs. Applied Physics Letters, 1993, 63, 752-754.	3.3	77
10	Systematic Study of the Effects of Modulation p-Doping on 1.3-\$mu{hbox {m}}\$ Quantum-Dot Lasers. IEEE Journal of Quantum Electronics, 2007, 43, 1129-1139.	1.9	65
11	1.55 Âμm InAs/GaAs Quantum Dots and High Repetition Rate Quantum Dot SESAM Mode-locked Laser. Scientific Reports, 2012, 2, 477.	3.3	65
12	Near-infrared and mid-infrared semiconductor broadband light emitters. Light: Science and Applications, 2018, 7, 17170-17170.	16.6	62
13	Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells. IEEE Photonics Technology Letters, 2006, 18, 58-60.	2.5	60
14	Piezoelectric-field effects on transition energies, oscillator strengths, and level widths in (111)B-grown (In,Ga)As/GaAs multiple quantum wells. Physical Review B, 1993, 48, 8491-8494.	3.2	49
15	Band gap of â€~â€~completely disordered'' Ga0.52In0.48P. Applied Physics Letters, 1995, 66, 3185-3187.	3.3	48
16	Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Device Engineering. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1015-1022.	2.9	46
17	Sensitivity Advantage of QCL Tunable-Laser Mid-Infrared Spectroscopy Over FTIR Spectroscopy. Applied Spectroscopy Reviews, 2015, 50, 822-839.	6.7	46
18	Density Control of GaSb/GaAs Self-assembled Quantum Dots (â^1¼25nm) Grown by Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 1998, 37, L203-L205.	1.5	44

#	Article	IF	CITATIONS
19	Single Photon Detection with a Quantum Dot Transistor. Japanese Journal of Applied Physics, 2001, 40, 2058-2064.	1.5	43
20	Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process. Optics Letters, 2008, 33, 1210.	3.3	43
21	Rapid radiative decay of charged excitons. Physical Review B, 2000, 62, R13294-R13297.	3.2	39
22	Direct modulation of excited state quantum dot lasers. Applied Physics Letters, 2009, 95, .	3.3	39
23	Epitaxially Regrown GaAs-Based Photonic Crystal Surface-Emitting Laser. IEEE Photonics Technology Letters, 2012, 24, 966-968.	2.5	38
24	Optical spectroscopy of self-assembled type II GaSb/GaAs quantum dot structures grown by molecular beam epitaxy. Applied Physics Letters, 1998, 72, 2856-2858.	3.3	35
25	The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates. Applied Physics Letters, 2012, 100, .	3.3	34
26	Valence-band splitting in orderedGa0.5In0.5P measured by polarized photoluminescence excitation spectroscopy. Physical Review B, 1992, 46, 7232-7235.	3.2	33
27	Photoluminescence excitation spectroscopy of GaAs:Er,O in the nearâ€bandâ€edge region. Journal of Applied Physics, 1996, 79, 8682-8687.	2.5	32
28	Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Skin Imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 748-754.	2.9	31
29	Broad-Band Superluminescent Light Emitting Diodes Incorporating Quantum Dots in Compositionally Modulated Quantum Wells. Japanese Journal of Applied Physics, 2006, 45, 2542-2545.	1.5	28
30	Atomic configurations of Er centers in GaAs:Er,O and AlGaAs:Er,O studied by site-selective luminescence spectroscopy. Journal of Applied Physics, 1997, 82, 3997-4005.	2.5	27
31	High-Power Quantum-Dot Superluminescent LED With Broadband Drive Current Insensitive Emission Spectra Using a Tapered Active Region. IEEE Photonics Technology Letters, 2008, 20, 782-784.	2.5	27
32	Electroluminescence recombination from excited-state carrier populations in double-barrier resonant-tunneling structures. Physical Review B, 1992, 45, 13757-13760.	3.2	26
33	Quantum dot selective area intermixing for broadband light sources. Optics Express, 2012, 20, 26950.	3.4	26
34	Tuning Superluminescent Diode Characteristics for Optical Coherence Tomography Systems by Utilizing a Multicontact Device Incorporating Wavelength-Modulated Quantum Dots. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 757-763.	2.9	25
35	A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap. Nanotechnology, 2009, 20, 055204.	2.6	23
36	Persistent template effect in InAs/GaAs quantum dot bilayers. Journal of Applied Physics, 2010, 107, .	2.5	23

#	Article	IF	CITATIONS
37	Ultra-broad spontaneous emission and modal gain spectrum from a hybrid quantum well/quantum dot laser structure. Applied Physics Letters, 2012, 100, .	3.3	23
38	Hybrid Quantum Well/Quantum Dot Structure for Broad Spectral Bandwidth Emitters. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 1900209-1900209.	2.9	23
39	A diode-pumped 1.5 μm waveguide laser mode-locked at 6.8 GHz by a quantum dot SESAM. Laser Physics Letters, 2013, 10, 105803.	1.4	23
40	Electronic control of coherence in a two-dimensional array of photonic crystal surface emitting lasers. Scientific Reports, 2015, 5, 13203.	3.3	23
41	Superluminescent diode with a broadband gain based on self-assembled InAs quantum dots and segmented contacts for an optical coherence tomography light source. Journal of Applied Physics, 2016, 119, 083107.	2.5	23
42	Comparison of spontaneous and piezoelectric polarization in GaN/Al0.65Ga0.35N multi-quantum-well structures. Applied Physics Letters, 2000, 76, 1428-1430.	3.3	22
43	Effect of facet angle on effective facet reflectivity and operating characteristics of quantum dot edge emitting lasers and superluminescent light-emitting diodes. Applied Physics Letters, 2007, 91, 081112.	3.3	22
44	Effects of intermixing on modulation p-doped quantum dot superluminescent light emitting diodes. Optics Express, 2010, 18, 7055.	3.4	22
45	All-Semiconductor Photonic Crystal Surface-Emitting Lasers Based on Epitaxial Regrowth. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 4900407-4900407.	2.9	21
46	Near-infrared superluminescent diode using stacked self-assembled InAs quantum dots with controlled emission wavelengths. Japanese Journal of Applied Physics, 2014, 53, 04EG10.	1.5	21
47	A Dual-Pass High Current Density Resonant Tunneling Diode for Terahertz Wave Applications. IEEE Electron Device Letters, 2015, 36, 1295-1298.	3.9	21
48	GaAs-Based Superluminescent Light-Emitting Diodes with 290-nm Emission Bandwidth by Using Hybrid Quantum Well/Quantum Dot Structures. Nanoscale Research Letters, 2015, 10, 1049.	5.7	21
49	Gallium Nitride Superluminescent Light Emitting Diodes for Optical Coherence Tomography Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-11.	2.9	21
50	Cu2O-Based Electrochemical Biosensor for Non-Invasive and Portable Glucose Detection. Biosensors, 2022, 12, 174.	4.7	20
51	Excitation power and barrier width dependence of photoluminescence in piezoelectric multiquantum well pâ€iâ€n structures. Applied Physics Letters, 1996, 68, 820-822.	3.3	19
52	Enhanced nonradiative Auger recombination in p-type modulation doped InAs/GaAs quantum dots. Applied Physics Letters, 2008, 93, .	3.3	19
53	Design, growth, fabrication, and characterization of InAsâ^•GaAs 1.3μ4m quantum dot broadband superluminescent light emitting diode. Journal of Applied Physics, 2006, 100, 103105.	2.5	18
54	Enhanced room-temperature quantum-dot effects in modulation-doped InAs/GaAs quantum dots. Applied Physics Letters, 2009, 95, 171902.	3.3	18

#	Article	IF	CITATIONS
55	Integration of Emission-Wavelength-Controlled InAs Quantum Dots for Ultra-Broadband Near-Infrared Light Source. Nanomaterials and Nanotechnology, 2014, 4, 26.	3.0	18
56	Carrier screening effects in piezoelectric strained InGaAs/GaAs quantum wells grown on the [111]Baxis. Journal of Applied Physics, 1994, 76, 5447-5452.	2.5	17
57	Multi-section quantum dot superluminescent diodes for spectral shape engineering. IET Optoelectronics, 2009, 3, 100-104.	3.3	17
58	1.5 μm Epitaxially Regrown Photonic Crystal Surface Emitting Laser Diode. IEEE Photonics Technology Letters, 2020, 32, 1531-1534.	2.5	17
59	Optical and thermal characteristics of narrow-ridge quantum-cascade lasers. Journal of Applied Physics, 2008, 103, 083113.	2.5	16
60	Low-Dimensional Waveguide Grating Fabrication in GaN with Use of SiCl4/Cl2/Ar-Based Inductively Coupled Plasma Dry Etching. Journal of Electronic Materials, 2009, 38, 635-639.	2.2	16
61	Toward 1550-nm GaAs-Based Lasers Using InAs/GaAs Quantum Dot Bilayers. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 1334-1342.	2.9	16
62	Imaging of spectral-domain optical coherence tomography using a superluminescent diode based on InAs quantum dots emitting broadband spectrum with Gaussian-like shape. Japanese Journal of Applied Physics, 2015, 54, 04DC07.	1.5	16
63	Coherently Coupled Photonic-Crystal Surface-Emitting Laser Array. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 493-499.	2.9	16
64	Growth of pseudomorphic InGaAs/GaAs quantum wells on [111]B GaAs for strained layer, piezoelectric, optoelectronic devices. Microelectronics Journal, 1995, 26, 811-820.	2.0	15
65	Growth, Fabrication, and Operating Characteristics of Ultra-Low Threshold Current Density 1.3 µm Quantum Dot Lasers. Japanese Journal of Applied Physics, 2005, 44, 2520-2522.	1.5	15
66	High-Power and Broadband Quantum Dot Superluminescent Diodes Centered at 1250 nm for Optical Coherence Tomography. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 1267-1272.	2.9	15
67	High performance intermixed p-doped quantum dot superluminescent diodes at 1.2â€[micro sign]m. Electronics Letters, 2010, 46, 295.	1.0	15
68	Negative differential gain due to many body effects in self-assembled quantum dot lasers. Applied Physics Letters, 2011, 99, 061104.	3.3	15
69	Monolithically grown multi-color InAs quantum dots as a spectral-shape-controllable near-infrared broadband light source. Applied Physics Letters, 2013, 103, .	3.3	15
70	Non-destructive mapping of doping and structural composition of MOVPE-grown high current density resonant tunnelling diodes through photoluminescence spectroscopy. Journal of Crystal Growth, 2015, 418, 102-110.	1.5	15
71	Development of a broadband superluminescent diode based on self-assembled InAs quantum dots and demonstration of high-axial-resolution optical coherence tomography imaging. Journal Physics D: Applied Physics, 2019, 52, 225105.	2.8	15
72	GaAs-based self-aligned laser incorporating InGaP opto-electronic confinement layer. Electronics Letters, 2008, 44, 905.	1.0	13

#	Article	IF	CITATIONS
73	Maximising performance of optical coherence tomography systems using a multi-section chirped quantum dot superluminescent diode. Microelectronics Journal, 2009, 40, 588-591.	2.0	13
74	Swept-Source Laser Based on Quantum-Dot Semiconductor Optical Amplifier—Applications in Optical Coherence Tomography. IEEE Photonics Technology Letters, 2011, 23, 739-741.	2.5	13
75	Band structure and waveguide modelling of epitaxially regrown photonic crystal surface-emitting lasers. Journal Physics D: Applied Physics, 2013, 46, 264005.	2.8	13
76	Epitaxial Designs for Maximizing Efficiency in Resonant Tunneling Diode Based Terahertz Emitters. IEEE Journal of Quantum Electronics, 2018, 54, 1-11.	1.9	13
77	Modeling and Device Simulation of Photonic Crystal Surface Emitting Lasers Based on Modal Index Analysis. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-9.	2.9	13
78	High performance InP-based quantum cascade distributed feedback lasers with deeply etched lateral gratings. Applied Physics Letters, 2006, 89, 201117.	3.3	12
79	All semiconductor swept laser source utilizing quantum dots. Applied Physics Letters, 2007, 91, 121119.	3.3	12
80	Zero and Controllable Linewidth Enhancement Factor in p-Doped 1.3 µm Quantum Dot Lasers. Japanese Journal of Applied Physics, 2007, 46, 2421-2423.	1.5	12
81	Simultaneous three-state lasing in quantum dot laser at room temperature. Electronics Letters, 2010, 46, 1155.	1.0	12
82	Room temperature simultaneous three-state lasing in hybrid quantum well/quantum dot laser. Electronics Letters, 2012, 48, 644.	1.0	12
83	10  GHz pulse repetition rate Er:Yb:glass laser modelocked with quantum dot semiconductor saturable absorber mirror. Applied Optics, 2016, 55, 3776.	2.1	12
84	Optimisation of photonic crystal coupling through waveguide design. Optical and Quantum Electronics, 2017, 49, 47.	3.3	12
85	Effect of rapid thermal annealing on threading dislocation density in III-V epilayers monolithically grown on silicon. Journal of Applied Physics, 2018, 123, .	2.5	12
86	Er-related trap levels in GaAs:Er,O studied by optical spectroscopy under hydrostatic pressure. Physical Review B, 1997, 56, 10255-10263.	3.2	11
87	Fabrication of v-groove gratings in InP by inductively coupled plasma etching with SiCl4/Ar. Semiconductor Science and Technology, 2006, 21, L1-L5.	2.0	11
88	Tradeoffs in the Realization of Electrically Pumped Vertical External Cavity Surface Emitting Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 1745-1752.	2.9	11
89	O-band excited state quantum dot bilayer lasers. Applied Physics Letters, 2011, 99, 051101.	3.3	11
90	Active glass waveguide amplifier on GaAs by UV-pulsed laser deposition and femtosecond laser inscription. Laser Physics Letters, 2012, 9, 329-339.	1.4	11

#	Article	IF	CITATIONS
91	Extending emission wavelength of InAs/GaAs quantum dots beyond 1.3μm by using quantum dot bi-layer for broadband light source. Journal of Crystal Growth, 2013, 378, 553-557.	1.5	11
92	Valley current characterization of high current density resonant tunnelling diodes for terahertz-wave applications. AIP Advances, 2017, 7, .	1.3	11
93	Broadband THz absorption spectrometer based on excitonic nonlinear optical effects. Light: Science and Applications, 2019, 8, 29.	16.6	11
94	Void engineering in epitaxially regrown GaAs-based photonic crystal surface emitting lasers by grating profile design. Applied Physics Letters, 2021, 118, .	3.3	11
95	Growth and characterization of (111)B InGaAs/GaAs multi-quantum well PIN diode structures. Journal of Electronic Materials, 1994, 23, 975-982.	2.2	10
96	Carrier dynamics and recombination processes of charged excitons in a GaAs/AlGaAs quantum well. Physica B: Condensed Matter, 1999, 272, 412-415.	2.7	10
97	Formation and Recombination Dynamics of Charged Excitons in a GaAs Quantum Well. Physica Status Solidi (B): Basic Research, 2001, 227, 297-306.	1.5	10
98	Tunable interband and intersubband transitions in modulation C-doped InGaAsâ^•GaAs quantum dot lasers by postgrowth annealing process. Applied Physics Letters, 2008, 93, 071111.	3.3	10
99	In-Plane Optical Anisotropy of GaN Refractive Index in Visible Light Region. IEEE Photonics Technology Letters, 2009, 21, 966-968.	2.5	10
100	High Repetition Rate Ti:Sapphire Laser Mode-Locked by InP Quantum-Dot Saturable Absorber. IEEE Photonics Technology Letters, 2011, 23, 1603-1605.	2.5	10
101	Multi-color quantum dot ensembles grown in selective-areas for shape-controlled broadband light source. Journal of Crystal Growth, 2011, 323, 191-193.	1.5	10
102	Optimization of Quantum-Dot Molecular Beam Epitaxy for Broad Spectral Bandwidth Devices. IEEE Photonics Journal, 2012, 4, 2066-2073.	2.0	10
103	Preferential alignment of Er–2O centers in GaAs:Er,O revealed by anisotropic hostâ€excited photoluminescence. Applied Physics Letters, 1996, 68, 3317-3319.	3.3	9
104	Improved temperature performance of 1.31-/spl mu/m quantum dot lasers by optimized ridge waveguide design. IEEE Photonics Technology Letters, 2005, 17, 1785-1787.	2.5	9
105	High-Power 1.3-\$mu\$m Quantum-Dot Superluminescent Light-Emitting Diode Grown by Molecular Beam Epitaxy. IEEE Photonics Technology Letters, 2007, 19, 109-111.	2.5	9
106	Gallium nitride light sources for optical coherence tomography. , 2017, , .		9
107	Coherent power scaling in photonic crystal surface emitting laser arrays. AIP Advances, 2021, 11, .	1.3	9
108	Effect of Deposition Temperature on the Opto-Electronic Properties of Molecular Beam Epitaxy Grown InAs Quantum Dot Devices for Broadband Applications. Japanese Journal of Applied Physics, 2012, 51, 02BG09.	1.5	9

#	Article	IF	CITATIONS
109	Common path Michelson interferometer based on multiple reflections within the sample arm: sensor applications and imaging artefacts. Measurement Science and Technology, 2011, 22, 027002.	2.6	8
110	Optical characterization of In-flushed InAs/GaAs quantum dots emitting a broadband spectrum with multiple peaks at ~1 \hat{I} 4m. Nanoscale Research Letters, 2015, 10, 231.	5.7	8
111	Mode Control in Photonic Crystal Surface Emitting Lasers Through External Reflection. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-8.	2.9	8
112	Resonant exciton excitation photoluminescence and dynamics in a GaAs/AlAs multiple quantum well with internal electric field. AIP Advances, 2020, 10, .	1.3	8
113	Electrically Driven Near-Infrared Broadband Light Source with Gaussian-Like Spectral Shape Based on Multiple InAs Quantum Dots. IEICE Transactions on Electronics, 2016, E99.C, 381-384.	0.6	8
114	Spectroscopic study of piezo-electric field effects in InGaAs/GaAs multi-quantum wells grown on (111)B oriented GaAs substrates. Solid-State Electronics, 1994, 37, 645-648.	1.4	7
115	Pressure-induced intra-4f luminescence in GaAs:Er,O. Applied Physics Letters, 1997, 71, 93-95.	3.3	7
116	Molecular Beam Epitaxial Growth of High Power Quantum Dot Super-Luminecent Diodes. Japanese Journal of Applied Physics, 2007, 46, 2418-2420.	1.5	7
117	Temperature dependence of Ga-assisted oxide desorption on GaAs(001). Journal of Physics: Conference Series, 2010, 209, 012066.	0.4	7
118	Study of annealed InAs/GaAs quantum dot structures. Journal of Physics: Conference Series, 2010, 209, 012036.	0.4	7
119	Optimisation of Coupling between Photonic Crystal and Active Elements in an Epitaxially Regrown GaAs Based Photonic Crystal Surface Emitting Laser. Japanese Journal of Applied Physics, 2012, 51, 02BG05.	1.5	7
120	Observation of Wannier-Stark ladder transitions inInxGa1â^'xAs-GaAs piezoelectric superlattices. Physical Review B, 1995, 52, R14340-R14343.	3.2	6
121	Energy-Transfer Processes in Oxygen-Codoped GaAs:Er. Materials Research Society Symposia Proceedings, 1996, 422, 267.	0.1	6
122	High performance 1.3μm InAs/GaAs quantum dot lasers with low threshold current and negative characteristic temperature. , 2006, 6184, 374.		6
123	Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching. Electronics Letters, 2007, 43, 587.	1.0	6
124	Analysis of 1.2μm InGaAsâ^•GaAs quantum dot laser for high power applications. Journal of Applied Physics, 2009, 106, 073102.	2.5	6
125	Quantum Well and Dot Self-Aligned Stripe Lasers Utilizing an InGaP Optoelectronic Confinement Layer. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 819-827.	2.9	6
126	Distributed feedback laser employing buried GaAs/InGaP index-coupled grating. Electronics Letters, 2010, 46, 1076.	1.0	6

#	Article	IF	CITATIONS
127	Simulations of nanograting-assisted light coupling in GaN planar waveguide. Optical and Quantum Electronics, 2011, 42, 619-629.	3.3	6
128	Common path Fourier domain optical coherence tomography based on multiple reflections within the sample arm. Optics Communications, 2011, 284, 3168-3172.	2.1	6
129	Optimisation of Coupling between Photonic Crystal and Active Elements in an Epitaxially Regrown GaAs Based Photonic Crystal Surface Emitting Laser. Japanese Journal of Applied Physics, 2012, 51, 02BG05.	1.5	6
130	Broadband Light Source Based on Four-Color Self-Assembled InAs Quantum Dot Ensembles Monolithically Grown in Selective Areas. IEICE Transactions on Electronics, 2012, E95-C, 247-250.	0.6	6
131	Growth of quantum three-dimensional structure of InGaAs emitting at ~1 µm applicable for a broadband near-infrared light source. Journal of Crystal Growth, 2017, 477, 230-234. Wide Frequency Tuning of Continuous Terahertz Wave Generated by Difference Frequency Mixing	1.5	6
132	under Exciton-Excitation Conditions in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mi>Ga</mml:mi><mml:mi>As</mml:mi> / <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"</mml:math </mml:math 	3.8	6
133	overflow="scroll"> <mml:mi>Al</mml:mi> <mml:mi>As</mml:mi> >Multiple Quantum Well. Optical spectroscopic study of electric field sharing effects in piezoelectric GaN/Al0.65Ga0.35N multi-quantum well structures. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 924-928.	2.7	5
134	High-performance 1300-nm InAs/GaAs quantum-dot lasers. , 2008, , .		5
135	Subthreshold diode characteristics of InAs/GaAs quantum dot lasers. Physical Review B, 2011, 83, .	3.2	5
136	Effect of Deposition Temperature on the Opto-Electronic Properties of Molecular Beam Epitaxy Grown InAs Quantum Dot Devices for Broadband Applications. Japanese Journal of Applied Physics, 2012, 51, 02BG09.	1.5	5
137	A PHOTOMIXER DRIVEN TERAHERTZ DIPOLE ANTENNA WITH HIGH INPUT RESISTANCE AND GAIN. Progress in Electromagnetics Research M, 2015, 44, 13-20.	0.9	5
138	Photoluminescence Characterisation of High Current Density Resonant Tunnelling Diodes for Terahertz Applications. IEICE Transactions on Electronics, 2016, E99.C, 181-188.	0.6	5
139	Dominant role of many-body effects on the carrier distribution function of quantum dot lasers. Applied Physics Express, 2016, 9, 032705.	2.4	5
140	Strain Balancing of Metal-Organic Vapour Phase Epitaxy InAs/GaAs Quantum Dot Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-8.	2.9	5
141	Proposal for Common Active 1.3- <inline-formula> <tex-math notation="LaTeX">\$mu\$ </tex-math> </inline-formula> m Quantum Dot Electroabsorption Modulated DFB Laser. IEEE Photonics Technology Letters, 2019, 31, 419-422.	2.5	5
142	Comparative analysis of void-containing and all-semiconductor 1.5 <i>µ</i> m InP-based photonic crystal surface-emitting laser diodes. AIP Advances, 2021, 11, .	1.3	5
143	Tunable external cavity laser diode based on wavelength controlled self-assembled InAs quantum dots for swept-source optical coherence tomography applications at 1100 nm wavelength band. , 2019, , .		5
144	Inductively coupled plasma etching of GaN using SiCl4/Cl2/Ar for submicron-sized features fabrication. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 2634-2637.	0.8	4

#	Article	IF	CITATIONS
145	Bilayer for extending the wavelength of QD lasers. Journal of Physics: Conference Series, 2010, 245, 012083.	0.4	4
146	1.52â€[micro sign]m electroluminescence from GaAs-based quantum dot bilayers. Electronics Letters, 2011, 47, 44.	1.0	4
147	GaAs-based superluminescent diodes with window-like facet structure for low spectral modulation at high output powers. Semiconductor Science and Technology, 2016, 31, 045003.	2.0	4
148	Characterisation of high current density resonant tunneling diodes for THz emission using photoluminescence spectroscopy. Proceedings of SPIE, 2016, , .	0.8	4
149	Non-destructive characterization of thin layer resonant tunneling diodes. Journal of Applied Physics, 2019, 126, .	2.5	4
150	Increase in terahertz-wave generation by difference frequency mixing by the overlap of exciton states in different GaAs/AlAs quantum wells and spectroscopic measurements. Optics Express, 2021, 29, 24387.	3.4	4
151	Evaluating resonances in PCSEL structures based on modal indices. IET Optoelectronics, 2019, 13, 17-22.	3.3	4
152	Configurational transformation of an Er center in GaAs:Er,O under hydrostatic pressure. Journal of Applied Physics, 1997, 82, 813-816.	2.5	3
153	Effect of GaAs polycrystal on the size and areal density of InAs quantum dots in selective area molecular beam epitaxy. Journal of Crystal Growth, 2006, 297, 38-43.	1.5	3
154	Ga assisted oxide desorption on GaAs(001) studied by scanning tunnelling microscopy. Journal of Crystal Growth, 2010, 312, 1687-1692.	1.5	3
155	Strain engineered bilayers for extending the operating wavelength of quantum dot lasers. IET Optoelectronics, 2011, 5, 100-104.	3.3	3
156	Design Rules and Characterisation of Electrically Pumped Vertical External Cavity Surface Emitting Lasers. Japanese Journal of Applied Physics, 2011, 50, 04DG05.	1.5	3
157	Gain spectrum measurement using the segmented contact method with an integrated optical amplifier. Journal of Applied Physics, 2014, 115, 163105.	2.5	3
158	Monte Carlo model incorporating many-body effects for determining the gain spectra of quantum dot lasers. Applied Physics Express, 2015, 8, 122102.	2.4	3
159	High input resistance terahertz dipole antenna with an isolating photonic band gap layer. , 2016, , .		3
160	Bandwidth enhancement in an InGaN/GaN three-section superluminescent diode for optical coherence tomography. Applied Physics Letters, 2020, 117, .	3.3	3
161	1.1 μm waveband tunable laser using emission-wavelength-controlled InAs quantum dots for swept-source optical coherence tomography applications. Japanese Journal of Applied Physics, 2021, 60, SBBE02.	1.5	3
162	Photoluminescence excitation spectroscopy for structural and electronic characterization of resonant tunneling diodes for THz applications. AIP Advances, 2021, 11, 035122.	1.3	3

#	Article	IF	CITATIONS
163	Fitting of photoluminescence spectra for structural characterisation of high current density resonant tunnelling diodes for THz applications. , 2021, , .		3
164	Characterisation of thin-layer resonant tunnelling diodes grown by MOVPE. , 2019, , .		3
165	Optical Anisotropy of Er Centers in GaAs:Er,O. Materials Research Society Symposia Proceedings, 1996, 422, 167.	0.1	2
166	The control of size and areal density of InAs self-assembled quantum dots in selective area molecular beam epitaxy on GaAs (001) surface. Microelectronics Journal, 2006, 37, 1505-1510.	2.0	2
167	Study of the effect of annealing of In(Ga)As quantum dots. Journal of Physics: Conference Series, 2010, 241, 012054.	0.4	2
168	A dual-pass high current density resonant tunnelling diode terahertz emitter. , 2015, , .		2
169	Study of electro-absorption effects in 1300nm In(Ga)As/GaAs quantum dot materials. Proceedings of SPIE, 2016, , .	0.8	2
170	Fabrication, characterisation, and epitaxial optimisation of MOVPE-grown resonant tunnelling diode THz emitters. , 2017, , .		2
171	Size anisotropy inhomogeneity effects in state-of-the-art quantum dot lasers. Applied Physics Letters, 2018, 113, 012105.	3.3	2
172	Increase in terahertz-wave intensity in a magnetic field due to difference-frequency mixing by exciton excitation in a GaAs/AlAs multiple quantum well. Optics Express, 2022, 30, 11789.	3.4	2
173	Broad-band superluminescent light emitting diodes incorporating quantum dots in compositionally modulated quantum wells. , 2006, , .		1
174	GROWTH AND CHARACTERIZATION OF MULTI-LAYER 1.3 μm QUANTUM DOT LASERS. International Journal of Nanoscience, 2007, 06, 291-296.	0.7	1
175	Fabrication and Characterization of InP-Based Quantum Cascade Distributed Feedback Lasers with Inductively Coupled Plasma Etched Lateral Gratings. Japanese Journal of Applied Physics, 2007, 46, 2424-2428.	1.5	1
176	Single grating period quantum cascade laser array with broad wavelength tuning range. Electronics Letters, 2008, 44, 1306.	1.0	1
177	A Quantum Dot Swept Laser Source Based upon a Multisection Laser Device. Japanese Journal of Applied Physics, 2008, 47, 2965-2967.	1.5	1
178	Operating Characteristics of GaAs/InGaP Self Aligned Stripe Lasers. Japanese Journal of Applied Physics, 2009, 48, 04C120.	1.5	1
179	Evaluation of a cheap ultrasonic stage for light source coherence function measurement, optical coherence tomography and dynamic focusing. Measurement Science and Technology, 2009, 20, 107002.	2.6	1

180 Dual-state lasing and the case against the phonon bottleneck. , 2010, , .

1

#	Article	IF	CITATIONS
181	Electroluminescence Studies of Modulation p-Doped Quantum Dot Laser Structures. IEEE Journal of Quantum Electronics, 2010, 46, 1847-1853.	1.9	1
182	Gain and absorption characteristics of bilayer quantum dot lasers beyond 1.3 μm. Proceedings of SPIE, 2011, , .	0.8	1
183	Comparison of gain measurement techniques for $1.3^{1/4}$ m quantum dot lasers. Proceedings of SPIE, 2011, , .	0.8	1
184	Excited State Bilayer Quantum Dot Lasers at 1.3 Âμm. Japanese Journal of Applied Physics, 2011, 50, 04DG10.	1.5	1
185	Realization of a photonic crystal surface emitting laser through GaAs based regrowth. Proceedings of SPIE, 2012, , .	0.8	1
186	Hybrid quantum well/quantum dot structures for broad spectral bandwidth devices. Proceedings of SPIE, 2012, , .	0.8	1
187	10 GHz Pulse Repetition Rate ERGO Laser Modelocked by a 1550 nm InAs/GaAs Quantum-Dot SESAM. , 2012, , .		1
188	Photonic crystal surface emitting lasers based on epitaxial regrowth. , 2013, , .		1
189	Broad bandwidth emission from hybrid QW/QD structures. , 2013, , .		1
190	Development of broad spectral bandwidth hybrid QW/QD structures from 1000-1400 nm. , 2014, , .		1
191	Optimization of high current density resonant tunneling diodes for terahertz emitters. , 2015, , .		1
192	3D FDTD modelling of photonic crystal surface emitting lasers. , 2015, , .		1
193	Radiation tolerant DC characteristics of InAs/GaAs quantum-dot diodes. , 2015, , .		1
194	Epitaxial design for maximising wall plug efficiency in resonant tunnelling diode terahertz emitters. , 2016, , .		1
195	Characterisation of high current density resonant tunnelling diodes for THz emission using photoluminescence spectroscopy. , 2016, , .		1
196	Three-dimensional finite-difference time-domain modelling of photonic crystal surface-emitting lasers. , 2016, , .		1
197	Optimization of the epitaxial design of high current density resonant tunneling diodes for terahertz emitters. , 2016, , .		1
198	Resonant Tunnelling Diodes for next generation THz systems. , 2018, , .		1

#	Article	IF	CITATIONS
199	Discontinuities in Multilayer Waveguides to Mode12-D Photonic Crystal Structures. , 2019, , .		1
200	Emission wavelength control of InAs/GaAs quantum dots using an As2 source for near-infrared broadband light source applications. Applied Physics Express, 2021, 14, 055501.	2.4	1
201	Modulation of exciton states through resonant excitation by continuous wave lasers in a GaAs/AlAs multiple quantum well. Journal Physics D: Applied Physics, 2021, 54, 335106.	2.8	1
202	Micro-photoluminescence characterisation of structural disorder in resonant tunneling diodes for THz applications. , 2021, , .		1
203	Micro-PL analysis of high current density resonant tunneling diodes for THz applications. Applied Physics Letters, 2021, 119, 072102.	3.3	1
204	Excited State Bilayer Quantum Dot Lasers at 1.3 Âμm. Japanese Journal of Applied Physics, 2011, 50, 04DG10.	1.5	1
205	Post-Growth Intermixing of GaAs Based Quantum Dot Devices. , 2012, , 109-130.		1
206	Monolithic All-Semiconductor PCSELs emitting at 1.3Å μ m. , 2021, , .		1
207	Polarization-pinning in substrate emission multi-mode vertical-cavity surface-emitting lasers using deep trenches. Applied Physics Letters, 2022, 120, 211102.	3.3	1
208	An Expert System Demonstrator for an Undergraduate Laboratory Experiment. International Journal of Electrical Engineering and Education, 1990, 27, 101-108.	0.8	0
209	Photoluminescence and photoluminescence excitation spectroscopy in ordered and disordered Ga0.52In0.48P. AIP Conference Proceedings, 1992, , .	0.4	0
210	The band gap of â€~â€~perfectly disordered'' Ga0.52In0.48P. AIP Conference Proceedings, 1994, , .	0.4	0
211	Stark ladders in piezoelectric superlattices. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1995, 17, 1775-1779.	0.4	0
212	Wannier-Stark ladder spectra in InxGa1â^'xAsî—,GaAs strained layer piezo-electric superlattices. Solid-State Electronics, 1996, 40, 167-170.	1.4	0
213	Modification of energy relaxation of InGaAs quantum dots by postgrowth thermal annealing. , 0, , .		0
214	Size, areal density and emission energy control of InAs self assemble quantum dots grown on GaAs by selective area molecular beam epitaxy. , 2006, , .		0
215	Quantum Dot Superluminescent Diodes - Bandwidth Engineering and Epitaxy for High Powers. Indium Phosphide and Related Materials Conference (IPRM), IEEE International Conference on, 2007, , .	0.0	0

216 Tuning and Modulation in Two Section Quantum Dot Lasers. , 2008, , .

0

#	Article	IF	CITATIONS
217	Multi-Contact Quantum Dot Superluminescent Diodes for Optical Coherence Tomography. , 2008, , .		Ο
218	Multi-contact quantum dot superluminescent diodes for optical coherence tomography. , 2008, , .		0
219	1.3¿m Quantum Dot Self-Aligned Stripe Laser. , 2008, , .		Ο
220	Two section quantum dot devices for tuning and modulation. , 2008, , .		0
221	GaAs-based self-aligned laser incorporating an InGaP opto-electronic confinement layer. , 2008, , .		Ο
222	GaAs-based buried heterostructure laser incorporating an InGaP opto-electronic confinement layer. , 2008, , .		0
223	Optical coherence tomography with high power quantum-dot superluminescent diodes. , 2009, , .		0
224	Buried InGaP/GaAs grating distributed feedback laser with AlGaAs cladding. , 2009, , .		0
225	Advanced Wavelength Tunable Quantum Dot Lasers and Broadband Quantum Dot Superluminescent Diodes Obtained by Post-Growth Intermixing. , 2009, , .		Ο
226	A platform for GaAs opto-electronic integrated circuits based on GaAs/AlGaAs overgrowth of patterned InGaP. , 2009, , .		0
227	Evaluation of a cheap ultrasonic stage for light source coherence function measurement, optical coherence tomography, optical coherence microscopy, and dynamic focusing. Proceedings of SPIE, 2009, , .	0.8	Ο
228	Broad-band high power quantum dot superluminescent diodes. , 2009, , .		0
229	Multi-contact quantum dot superluminescent diodes for optical coherence tomography. , 2009, , .		Ο
230	A platform for GaAs opto-electronic integrated circuits based on GaAs/AlGaAs regrowth upon patterned InGaP. , 2010, , .		0
231	Towards 1.55 µm GaAs based lasers using quantum dot bilayers. , 2010, , .		Ο
232	Trade-offs in the realization of electrically pumped vertical external cavity surface emitting lasers. , 2010, , .		0
233	Gain spectra analysis of bilayer quantum dot lasers beyond 1.3μm. , 2010, , .		0
234	Common path FDOCT based on multiple reflections within the sample arm. Proceedings of SPIE, 2011, , .	0.8	0

#	Article	IF	CITATIONS
235	Design and characterization of electrically pumped vertical external cavity surface emitting lasers. Proceedings of SPIE, 2011, , .	0.8	Ο
236	Evaluation of a swept-laser optical coherence tomography light source based on a novel quantum-dot based semiconductor optical amplifier. Proceedings of SPIE, 2011, , .	0.8	0
237	Erbium doped glass-semiconductor integrated waveguide amplifier. , 2011, , .		Ο
238	Epitaxially regrown gaas based photonic crystal surface emitting laser. , 2011, , .		0
239	Effect of modulation p-doping on the differential carrier lifetime of quantum dot lasers. Proceedings of SPIE, 2012, , .	0.8	Ο
240	Self-assembled quantum dot-based swept laser source for optical coherence tomography applications. , 2012, , .		0
241	Negative differential gain in 1.3um quantum dot lasers: comparison of self-heating and free carrier effects. Proceedings of SPIE, 2012, , .	0.8	0
242	Photonic crystal surface emitting lasers based on epitaxial regrowth. , 2012, , .		0
243	Characterization of recombination processes in quantum dot lasers using small signal modulation. , 2012, , .		0
244	Hybrid quantum well/quantum dot active element for broad spectral bandwidth emitters and amplifiers. , 2012, , .		0
245	Absorption and single-pass gain measurements in bilayer quantum dot laser structure. , 2013, , .		0
246	Terahertz dipole antenna performance enhancement using a photonic-bandgap GaAs substrate. , 2014, , .		0
247	Near- infrared, mode-locked waveguide lasers with multi-GHz repetition rates. , 2014, , .		0
248	Photonic waveguide engineering using pulsed lasers — A novel approach for non-clean room fabrication!. , 2014, , .		0
249	Lasers and SLEDs for optical coherence tomography. , 2015, , .		0
250	Substrate removal and capillary bonding of a quantum beat sample. , 2015, , .		0
251	Optimisation of fundamental transverse mode output in electrically pumped vertical external cavity surface emitting lasers. Proceedings of SPIE, 2015, , .	0.8	0
252	Platform manufacturing technique for next generation integrated photonic components. , 2015, , .		0

#	Article	IF	CITATIONS
253	The mid-infrared swept laser: life beyond OCT?. , 2015, , .		0
254	Waveguide and photonic crystal design of photonic crystal surface-emitting laser. Proceedings of SPIE, 2015, , .	0.8	0
255	Robust electrical characteristics of multiple-layer InAs/GaAs quantum-dot diodes under gamma irradiation. , 2015, , .		0
256	High-speed high-sensitivity infrared spectroscopy using mid-infrared swept lasers (Conference) Tj ETQq0 0 0 rgB	[Overloc	k 10 Tf 50 62
257	Photonic crystal surface emitting lasers $\hat{a} \in$ " Coherent arrays and external feedback. , 2016, , .		0
258	Rigorous comparison of the spectral SNR of FTIR and EC-QCL spectroscopy (Conference Presentation). , 2016, , .		0
259	GaAs-based self-aligned stripe superluminescent diodes processed normal to the cleaved facet. Proceedings of SPIE, 2016, , .	0.8	0
260	Simulation of broad spectral bandwidth emitters at 1060 nm for optical coherence tomography. , 2016, , .		0
261	Room temperature tuneable THz generation based on 2nd order non-linear optical effects in GaAs/AlGaAs multi-quantum well excitons. , 2017, , .		0
262	Develoment of All-Semiconductor Photonic Crystal Surface Emitting Lasers. , 2018, , .		0
263	Modal Index Analysis of Resonances of PCSEL. , 2018, , .		0
264	Modelling and Device Simulation of Photonic Crystal Surface Emitting Lasers Based on Modal Index Analysis. , 2018, , .		0
265	In-Line Non-Destructive Characterisation Method for Photonic Crystal Surface Emitting Lasers. , 2018, , .		0
266	Rapid recombination process of free trions. Springer Proceedings in Physics, 2001, , 497-498.	0.2	0
267	Excess carrier effects upon the excitonic absorption thresholds of remotely doped GaAs/AlGaAs quantum wells. Springer Proceedings in Physics, 2001, , 505-506.	0.2	0
268	GaAs-based Self-Aligned Laser Incorporating an InGaP Opto-Electronic Confinement Layer. , 2008, , .		0
269	Evaluation of a swept-laser optical coherence tomography light source based on a novel quantum-dot based semiconductor optical amplifier. , 2011, , .		0
270	High Pulse Repetition Rate Lasers Modelocked with Quantum Dot SESAMs. , 2013, , .		0

#	Article	IF	CITATIONS
271	Diode-pumped, 6.8 GHz, solid-state waveguide laser mode-locked at 1.5 \hat{I}_4 m by a quantum-dot SESAM. , 2013, , .		0
272	Mode control in photonic crystal surface emitting lasers (PCSELs) through in-plane feedback (Conference Presentation). , 2017, , .		0
273	Incorporating structural analysis in a quantum dot Monte-Carlo model. , 2018, , .		Ο
274	Development of All-Semiconductor Photonic Crystal Surface Emitting Lasers. , 2019, , .		0
275	Resilience of state-of-the-art 1300nm In(Ga)As/GaAs quantum-dot lasers to external optical feedback (Withdrawal Notice). , 2019, , .		Ο
276	Azimuthally Apodized Focusing Gratings. , 2020, , .		0
277	PL and PLE characterization of high current density resonant tunnelling diodes for THz applications. , 2022, , .		0
278	Near-infrared dual-wavelength surface-emitting light source using InAs quantum dots resonant with vertical cavity modes. Japanese Journal of Applied Physics, 2022, 61, SD1003.	1.5	0