
George W Luther Iii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2768679/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemistry of Iron Sulfides. Chemical Reviews, 2007, 107, 514-562.	47.7	1,209
2	Occurrence and Mammalian Cell Toxicity of Iodinated Disinfection Byproducts in Drinking Water. Environmental Science & Technology, 2008, 42, 8330-8338.	10.0	830
3	Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochimica Et Cosmochimica Acta, 1999, 63, 3373-3378.	3.9	658
4	Partitioning and speciation of solid phase iron in saltmarsh sediments. Geochimica Et Cosmochimica Acta, 1994, 58, 1701-1710.	3.9	536
5	Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science, 2019, 363, .	12.6	479
6	Competition among marine phytoplankton for different chelated iron species. Nature, 1999, 400, 858-861.	27.8	429
7	Development of a Gold Amalgam Voltammetric Microelectrode for the Determination of Dissolved Fe, Mn, O2, and S(-II) in Porewaters of Marine and Freshwater Sediments. Environmental Science & Technology, 1995, 29, 751-761.	10.0	359
8	Pyrite synthesis via polysulfide compounds. Geochimica Et Cosmochimica Acta, 1991, 55, 2839-2849.	3.9	357
9	Interactions of manganese with the nitrogen cycle: Alternative pathways to dinitrogen. Geochimica Et Cosmochimica Acta, 1997, 61, 4043-4052.	3.9	357
10	Complexation of Fe(III) by natural organic ligands in the Northwest Atlantic Ocean by a competitive ligand equilibration method and a kinetic approach. Marine Chemistry, 1995, 50, 159-177.	2.3	350
11	Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The mechanism. Geochimica Et Cosmochimica Acta, 1997, 61, 135-147.	3.9	344
12	Advective Transport Affecting Metal and Nutrient Distributions and Interfacial Fluxes in Permeable Sediments. Geochimica Et Cosmochimica Acta, 1998, 62, 613-631.	3.9	340
13	Chemical speciation drives hydrothermal vent ecology. Nature, 2001, 410, 813-816.	27.8	337
14	Ironâ€sulfurâ€phosphorus cycling in the sediments of a shallow coastal bay: Implications for sediment nutrient release and benthic macroalgal blooms. Limnology and Oceanography, 2002, 47, 1346-1354.	3.1	326
15	lodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6954-6958.	7.1	318
16	Commemorating Two Centuries of Iodine Research: An Interdisciplinary Overview of Current Research. Angewandte Chemie - International Edition, 2011, 50, 11598-11620.	13.8	299
17	ATR-FTIR spectroscopic studies of boric acid adsorption on hydrous ferric oxide. Geochimica Et Cosmochimica Acta, 2003, 67, 2551-2560.	3.9	294
18	Pyrite oxidation and reduction: Molecular orbital theory considerations. Geochimica Et Cosmochimica Acta, 1987, 51, 3193-3199.	3.9	291

#	Article	IF	CITATIONS
19	Soluble Mn(III) in Suboxic Zones. Science, 2006, 313, 1955-1957.	12.6	281
20	The Behaviour of Dissolved Barium in Estuaries. Estuarine, Coastal and Shelf Science, 1997, 45, 113-121.	2.1	231
21	Seasonal iron cycling in the salt-marsh sedimentary environment: the importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively. Marine Chemistry, 1992, 40, 81-103.	2.3	227
22	Abundant Porewater Mn(III) Is a Major Component of the Sedimentary Redox System. Science, 2013, 341, 875-878.	12.6	222
23	Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean. Nature Geoscience, 2011, 4, 367-371.	12.9	210
24	Evidence for iron, copper and zinc complexation as multinuclear sulphide clusters in oxic rivers. Nature, 2000, 406, 879-882.	27.8	197
25	Low-oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron(II) oxidizing microorganisms. Geochimica Et Cosmochimica Acta, 2008, 72, 3358-3370.	3.9	195
26	Determination of conditional stability constants and kinetic constants for strong model Fe-binding ligands in seawater. Marine Chemistry, 2000, 69, 1-17.	2.3	192
27	Metal Sulfide Cluster Complexes and their Biogeochemical Importance in the Environment. Journal of Nanoparticle Research, 2005, 7, 389-407.	1.9	191
28	The Role of One- and Two-Electron Transfer Reactions in Forming Thermodynamically Unstable Intermediates as Barriers in Multi-Electron Redox Reactions. Aquatic Geochemistry, 2010, 16, 395-420.	1.3	190
29	Inorganic and Organic Sulfur Cycling in Salt-Marsh Pore Waters. Science, 1986, 232, 746-749.	12.6	188
30	Chemical and biological reduction of Mn (III)-pyrophosphate complexes: Potential importance of dissolved Mn (III) as an environmental oxidant. Geochimica Et Cosmochimica Acta, 1995, 59, 885-894.	3.9	187
31	Polarographic analysis of sulfur species in marine porewaters1. Limnology and Oceanography, 1985, 30, 727-736.	3.1	184
32	Direct determination of iodide in seawater by cathodic stripping square wave voltammetry. Analytical Chemistry, 1988, 60, 1721-1724.	6.5	181
33	Profiles of strontium and barium in Mercenaria mercenaria and Spisula solidissima shells. Geochimica Et Cosmochimica Acta, 1996, 60, 3445-3456.	3.9	173
34	Thermodynamics and Kinetics of Sulfide Oxidation by Oxygen: A Look at Inorganically Controlled Reactions and Biologically Mediated Processes in the Environment. Frontiers in Microbiology, 2011, 2, 62.	3.5	173
35	Determination of Metal (Bi)Sulfide Stability Constants of Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+by Voltammetric Methods. Environmental Science & Technology, 1996, 30, 671-679.	10.0	167
36	Interactions between metal oxides and species of nitrogen and iodine in bioturbated marine sediments. Geochimica Et Cosmochimica Acta, 2000, 64, 2751-2763.	3.9	159

#	Article	IF	CITATIONS
37	Polarographic and Spectrophotometric Investigation of Iron(III) Complexation to 3,4-Dihydroxyphenylalanine-Containing Peptides and Proteins from Mytilus edulis. Inorganic Chemistry, 1994, 33, 5819-5824.	4.0	157
38	Use of voltammetric solid-state (micro)electrodes for studying biogeochemical processes: Laboratory measurements to real time measurements with an in situ electrochemical analyzer (ISEA). Marine Chemistry, 2008, 108, 221-235.	2.3	156
39	Concentration and form of dissolved sulfide in the oxic water column of the ocean. Marine Chemistry, 1989, 27, 165-177.	2.3	154
40	Simultaneous measurement of O ₂ , Mn, Fe, I ^{â^'} , and S(—II) in marine pore waterswith a solidâ€state voltammetric microelectrode. Limnology and Oceanography, 1998, 43, 325-333.	3.1	152
41	Sulfur enrichment of humic substances in a Delaware salt marsh sediment core. Geochimica Et Cosmochimica Acta, 1991, 55, 979-988.	3.9	142
42	Growth and Phylogenetic Properties of Novel Bacteria Belonging to the Epsilon Subdivision of the Proteobacteria Enriched from Alvinella pompejana and Deep-Sea Hydrothermal Vents. Applied and Environmental Microbiology, 2001, 67, 4566-4572.	3.1	137
43	Potential for Microscale Bacterial Fe Redox Cycling at the Aerobic-Anaerobic Interface. Geomicrobiology Journal, 2004, 21, 379-391.	2.0	137
44	Soluble Mn(III)–L complexes are abundant in oxygenated waters and stabilized by humic ligands. Geochimica Et Cosmochimica Acta, 2017, 199, 238-246.	3.9	135
45	In Situ Deployment of Voltammetric, Potentiometric, and Amperometric Microelectrodes from a ROV To Determine Dissolved O2, Mn, Fe, S(â^'2), and pH in Porewaters. Environmental Science & Technology, 1999, 33, 4352-4356.	10.0	134
46	Sulfur speciation and sulfide oxidation in the water column of the Black Sea. Deep-sea Research Part A, Oceanographic Research Papers, 1991, 38, S1121-S1137.	1.5	133
47	Sulfur speciation monitored in situ with solid state gold amalgam voltammetric microelectrodes: polysulfides as a special case in sediments, microbial mats and hydrothermal vent waters. Journal of Environmental Monitoring, 2001, 3, 61-66.	2.1	130
48	Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay. Nature Communications, 2017, 8, 369.	12.8	128
49	Reactivity of Freshly Formed Fe(III) in Synthetic Solutions and (Pore)Waters:Â Voltammetric Evidence of an Aging Process. Environmental Science & Technology, 2000, 34, 2169-2177.	10.0	126
50	Composition of anoxic hypersaline brines in the Tyro and Bannock Basins, eastern Mediterranean. Marine Chemistry, 1990, 31, 63-88.	2.3	125
51	Seasonal cycling of Fe in saltmarsh sediments. Biogeochemistry, 1995, 29, 159-181.	3.5	125
52	Pyrite and oxidized iron mineral phases formed from pyrite oxidation in salt marsh and estuarine sediments. Geochimica Et Cosmochimica Acta, 1982, 46, 2665-2669.	3.9	124
53	Title is missing!. , 1997, 3, 191-211.		123
54	Aqueous Copper Sulfide Clusters as Intermediates during Copper Sulfide Formation. Environmental Science & Technology, 2002, 36, 394-402.	10.0	122

#	Article	IF	CITATIONS
55	Evidence for aqueous clusters as intermediates during zinc sulfide formation. Geochimica Et Cosmochimica Acta, 1999, 63, 3159-3169.	3.9	120
56	Seasonal cycling of sulfur and iron in porewaters of a Delaware salt marsh. Marine Chemistry, 1988, 23, 295-309.	2.3	115
57	Dissolved organic Fe(III) and Fe(II) complexes in salt marsh porewaters. Geochimica Et Cosmochimica Acta, 1996, 60, 951-960.	3.9	113
58	Manganese(II) Oxidation and Mn(IV) Reduction in the Environment—Two One-Electron Transfer Steps Versus a Single Two-Electron Step. Geomicrobiology Journal, 2005, 22, 195-203.	2.0	112
59	Variation in Fe-organic complexation with depth in the Northwestern Atlantic Ocean as determined using a kinetic approach. Marine Chemistry, 1998, 62, 241-258.	2.3	111
60	Dynamic hydrologic and biogeochemical processes drive microbially enhanced iron and sulfur cycling within the intertidal mixing zone of a beach aquifer. Limnology and Oceanography, 2015, 60, 329-345.	3.1	111
61	Lateral injection of oxygen with the Bosporus plume—fingers of oxidizing potential in the Black Sea. Limnology and Oceanography, 2003, 48, 2369-2376.	3.1	110
62	Metal Sulfide Complexes and Clusters. Reviews in Mineralogy and Geochemistry, 2006, 61, 421-504.	4.8	108
63	Simultaneous determination of soluble manganese(III), manganese(II) and total manganese in natural (pore)waters. Talanta, 2011, 84, 374-381.	5.5	108
64	Sizeâ€fractionated iron concentrations in the water column of the western North Atlantic Ocean. Limnology and Oceanography, 1994, 39, 1119-1129.	3.1	107
65	Quantifying elemental sulfur (S0), bisulfide (HSâ^') and polysulfides (Sx2â^') using a voltammetric method. Analytica Chimica Acta, 2000, 415, 175-184.	5.4	106
66	Reductive dissolution of manganese(III, IV) (hydr)oxides by oxalate: the effect of pH and light. Langmuir, 1992, 8, 95-103.	3.5	104
67	Mechanisms of oxidation of organosulfur compounds by ferrate(VI). Chemosphere, 2011, 82, 1083-1089.	8.2	102
68	Reduction of iodate in seawater during Arabian Sea shipboard incubations and in laboratory cultures of the marine bacterium Shewanella putrefaciens strain MR-4. Marine Chemistry, 1997, 57, 347-354.	2.3	99
69	Control of Ferrous Iron Oxidation within Circumneutral Microbial Iron Mats by Cellular Activity and Autocatalysis. Environmental Science & Technology, 2007, 41, 6084-6089.	10.0	99
70	Nanoparticulate pyrite and other nanoparticles are a widespread component of hydrothermal vent black smoker emissions. Chemical Geology, 2014, 366, 32-41.	3.3	98
71	Oxidation state of sulfur in thiosulfate and implications for anaerobic energy metabolism. Geochimica Et Cosmochimica Acta, 1993, 57, 1619-1623.	3.9	97
72	Rapid, oxygen-dependent microbial Mn(II) oxidation kinetics at sub-micromolar oxygen concentrations in the Black Sea suboxic zone. Geochimica Et Cosmochimica Acta, 2009, 73, 1878-1889.	3.9	97

#	Article	IF	CITATIONS
73	Sulphur speciation in anoxic hypersaline sediments from the eastern Mediterranean Sea. Geochimica Et Cosmochimica Acta, 1997, 61, 307-321.	3.9	96
74	Microbial essentials at hydrothermal vents. Nature, 2000, 404, 835-835.	27.8	96
75	The Application of Electrochemical Tools for In Situ Measurements in Aquatic Systems. Electroanalysis, 2000, 12, 401-412.	2.9	95
76	The molecular biogeochemistry of manganese(II) oxidation. Biochemical Society Transactions, 2012, 40, 1244-1248.	3.4	95
77	Evidence for the role of endosymbionts in regional-scale habitat partitioning by hydrothermal vent symbioses. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3241-50.	7.1	94
78	A comparison of dissolved iodine cycling at the Bermuda Atlantic Time-series Station and Hawaii Ocean Time-series Station. Deep-Sea Research Part II: Topical Studies in Oceanography, 1996, 43, 455-466.	1.4	90
79	The Microbial Ferrous Wheel in a Neutral pH Groundwater Seep. Frontiers in Microbiology, 2012, 3, 172.	3.5	90
80	Temporal and spatial variability of reduced sulfur species (FeS2, S2O3 2â^') and porewater parameters in salt marsh sediments. Biogeochemistry, 1991, 14, 57-88.	3.5	87
81	Redox Chemistry in the Root Zone of a Salt Marsh Sediment in the Tagus Estuary, Portugal. Aquatic Geochemistry, 2003, 9, 257-271.	1.3	86
82	Microbial Iron Mats at the Mid-Atlantic Ridge and Evidence that Zetaproteobacteria May Be Restricted to Iron-Oxidizing Marine Systems. PLoS ONE, 2015, 10, e0119284.	2.5	85
83	Polarographic determination of half-wave potentials for copper-organic complexes in seawater. Marine Chemistry, 1999, 67, 219-232.	2.3	83
84	Evidence for the presence of strong Mn(III)-binding ligands in the water column of the Chesapeake Bay. Marine Chemistry, 2015, 171, 58-66.	2.3	81
85	Redox Chemistry of lodine in Seawater. Advances in Chemistry Series, 1995, , 135-155.	0.6	80
86	Mediation of Sulfur Speciation by a Black Sea Facultative Anaerobe. Science, 1993, 259, 801-803.	12.6	78
87	Voltammetric estimation of iron(III) thermodynamic stability constants for catecholate siderophores isolated from marine bacteria and cyanobacteria. Marine Chemistry, 1995, 50, 179-188.	2.3	78
88	Measuring Metal Sulfide Complexes in Oxic River Waters with Square Wave Voltammetry. Environmental Science & Technology, 1999, 33, 3021-3026.	10.0	78
89	Marine Chemical Technology and Sensors for Marine Waters: Potentials and Limits. Annual Review of Marine Science, 2009, 1, 91-115.	11.6	78
90	Biotic and abiotic factors affecting distributions of megafauna in diffuse flow on andesite and basalt along the Eastern Lau Spreading Center, Tonga. Marine Ecology - Progress Series, 2010, 418, 25-45.	1.9	78

#	Article	IF	CITATIONS
91	lodine chemistry reflects productivity and denitrification in the Arabian Sea: evidence for flux of dissolved species from sediments of western India into the OMZ. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49, 2303-2318.	1.4	77
92	Spatial and temporal distribution of iron in the surface water of the northwestern Atlantic Ocean. Geochimica Et Cosmochimica Acta, 1996, 60, 2729-2741.	3.9	76
93	The Fe(II)-oxidizing <i>Zetaproteobacteria</i> : historical, ecological and genomic perspectives. FEMS Microbiology Ecology, 2019, 95, .	2.7	76
94	Physicochemical characterization of the microhabitat of the epibionts associated with Alvinella pompejana, a hydrothermal vent annelid. Geochimica Et Cosmochimica Acta, 2004, 68, 2055-2066.	3.9	72
95	The East Pacific Rise Between 9°N and 10°N: Twenty-Five Years of Integrated, Multidisciplinary Oceanic Spreading Center Studies. Oceanography, 2012, 25, 18-43.	1.0	72
96	The Adsorption of the Adhesive Protein of the Blue Mussel Mytilus edulis L onto Type 304L Stainless Steel. Journal of Colloid and Interface Science, 1994, 168, 206-216.	9.4	71
97	Quantitative Assessment of the Sulfuric Acid Contribution to New Particle Growth. Environmental Science & Technology, 2012, 46, 4365-4373.	10.0	71
98	Iodine speciation in the water column of the Black Sea. Deep-sea Research Part A, Oceanographic Research Papers, 1991, 38, S875-S882.	1.5	70
99	Distribution of diffuse flow megafauna in two sites on the Eastern Lau Spreading Center, Tonga. Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56, 2041-2056.	1.4	68
100	Sulfur speciation in the upper Black Sea sediments. Chemical Geology, 2010, 269, 364-375.	3.3	68
101	Iron and Sulfur Chemistry in a Stratified Lake: Evidence for Iron-Rich Sulfide Complexes. Aquatic Geochemistry, 2003, 9, 87-110.	1.3	67
102	The role of microaerophilic Feâ€oxidizing microâ€organisms in producing banded iron formations. Geobiology, 2016, 14, 509-528.	2.4	67
103	lodine chemistry in the water column of the Chesapeake Bay: Evidence for organic iodine forms. Estuarine, Coastal and Shelf Science, 1991, 32, 267-279.	2.1	66
104	Biogeochemistry of Fe(II) oxidation in a photosynthetic microbial mat: Implications for Precambrian Fe(II) oxidation. Geochimica Et Cosmochimica Acta, 2007, 71, 4629-4643.	3.9	66
105	Root-Induced Cycling of Lead in Salt Marsh Sediments. Environmental Science & Technology, 2005, 39, 2080-2086.	10.0	63
106	Hydrothermal Fe cycling and deep ocean organic carbon scavenging: Model-based evidence for significant POC supply to seafloor sediments. Earth and Planetary Science Letters, 2015, 419, 143-153.	4.4	63
107	Voltammetric characterization of iron(II) sulfide complexes in laboratory solutions and in marine waters and porewaters. Environmental Science & amp; Technology, 1993, 27, 1154-1163.	10.0	62
108	Processes controlling the distribution and cycling of manganese in the oxygen minimum zone of the Arabian Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2000, 47, 1541-1561.	1.4	62

#	Article	IF	CITATIONS
109	The roles of anoxia, H2S, and storm events in fish kills of dead-end canals of Delaware inland bays. Estuaries and Coasts, 2004, 27, 551-560.	1.7	61
110	The kinetics of iodide oxidation by the manganese oxide mineral birnessite. Geochimica Et Cosmochimica Acta, 2009, 73, 2850-2861.	3.9	61
111	Determination of metal-organic complexation in natural waters by SWASV with pseudopolarograms. Electroanalysis, 1995, 7, 166-177.	2.9	60
112	lron speciation in the Arabian Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2000, 47, 1517-1539.	1.4	60
113	Title is missing!. Aquatic Geochemistry, 2002, 8, 15-36.	1.3	59
114	Processes controlling the redox budget for the oxic/anoxic water column of the Black Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 1817-1841.	1.4	59
115	lodine speciation in chesapeake bay waters. Marine Chemistry, 1988, 24, 315-325.	2.3	57
116	Sub-surface iodide maxima: evidence for biologically catalyzed redox cycling in Arabian Sea OMZ during the SW intermonsoon. Deep-Sea Research Part II: Topical Studies in Oceanography, 1997, 44, 1391-1409.	1.4	56
117	Oxidation of Cysteine and Glutathione by Soluble Polymeric MnO2. Environmental Science & Technology, 2003, 37, 3332-3338.	10.0	56
118	Oxidation of synthesized sub-micron pyrite (FeS 2) in seawater. Geochimica Et Cosmochimica Acta, 2014, 144, 96-108.	3.9	56
119	Trace metal solubility in salt marsh sediments contaminated with sewage sludge. Estuarine, Coastal and Shelf Science, 1986, 23, 477-498.	2.1	55
120	The dynamic response of optical oxygen sensors and voltammetric electrodes to temporal changes in dissolved oxygen concentrations. Analytica Chimica Acta, 2004, 518, 93-100.	5.4	55
121	Morphology of biogenic iron oxides records microbial physiology and environmental conditions: toward interpreting iron microfossils. Geobiology, 2013, 11, 457-471.	2.4	53
122	Kinetics of Fe(III) and Mn(IV) reduction by the Black Sea strain of Shewanella putrefaciens using in situ solid state voltammetric Au/Hg electrodes. Marine Chemistry, 2000, 70, 171-180.	2.3	52
123	Distribution and size fractionation of elemental sulfur in aqueous environments: The Chesapeake Bay and Mid-Atlantic Ridge. Geochimica Et Cosmochimica Acta, 2014, 142, 334-348.	3.9	51
124	A kinetic approach to assess the strengths of ligands bound to soluble Mn(III). Marine Chemistry, 2015, 173, 93-99.	2.3	51
125	Revisiting Mn and Fe removal in humic rich estuaries. Geochimica Et Cosmochimica Acta, 2017, 209, 267-283.	3.9	51
126	Voltammetric Microelectrodes for Biocorrosion Studies. Corrosion, 1998, 54, 814-823.	1.1	50

#	Article	IF	CITATIONS
127	Removal of H2S via an iron catalytic cycle and iron sulfide precipitation in the water column of dead end tributaries. Estuarine, Coastal and Shelf Science, 2006, 70, 461-472.	2.1	50
128	Nanoparticle Chemical Composition During New Particle Formation. Aerosol Science and Technology, 2011, 45, 1041-1048.	3.1	50
129	Speciation of manganese in Chesapeake Bay waters by voltammetric methods. Analytica Chimica Acta, 1994, 284, 473-480.	5.4	49
130	In vivo speciation studies and antioxidant properties of bromine in Laminaria digitata reinforce the significance of iodine accumulation for kelps. Journal of Experimental Botany, 2013, 64, 2653-2664.	4.8	49
131	Oxidative and reductive processes contributing to manganese cycling at oxic-anoxic interfaces. Marine Chemistry, 2017, 195, 122-128.	2.3	49
132	The influence of sulfides on soluble organic-Fe(III) in anoxic sediment porewaters. Estuaries and Coasts, 2002, 25, 1088-1096.	1.7	48
133	Spatial and temporal variability of the Black Sea suboxic zone. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 1756-1768.	1.4	48
134	Bio-volatilization of polonium: Results from laboratory analyses. Aquatic Geochemistry, 1995, 1, 175-188.	1.3	47
135	Early diagenesis and sulphur speciation in sediments of the Oman Margin, northwestern Arabian Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 1997, 44, 1361-1380.	1.4	47
136	The interface between oxic seawater and the anoxic Bannock brine; its sharpness and the consequences for the redox-related cycling of Mn and Ba. Marine Chemistry, 1990, 31, 205-217.	2.3	44
137	Determination of inorganic sulphur speciation with polarographic techniques: Some preliminary results for recent hypersaline anoxic sediments. Marine Geology, 1991, 100, 115-123.	2.1	44
138	Formation of Zn- and Fe-sulfides near hydrothermal vents at the Eastern Lau Spreading Center: implications for sulfide bioavailability to chemoautotrophs. Geochemical Transactions, 2008, 9, 6.	0.7	44
139	lodine chemistry in deep anoxic basins and overlying waters of the Mediterranean Sea. Marine Chemistry, 1990, 31, 153-170.	2.3	43
140	Bioavailability of iron to <i>Trichodesmium</i> colonies in the western subtropical Atlantic Ocean. Limnology and Oceanography, 2003, 48, 2250-2255.	3.1	43
141	What controls dissolved iron concentrations in the world ocean? — a comment. Marine Chemistry, 1997, 57, 173-179.	2.3	42
142	Comparison of pyrite (FeS2) synthesis mechanisms to reproduce natural FeS2 nanoparticles found at hydrothermal vents. Geochimica Et Cosmochimica Acta, 2013, 120, 447-458.	3.9	41
143	The uptake and excretion of partially oxidized sulfur expands the repertoire of energy resources metabolized by hydrothermal vent symbioses. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142811.	2.6	41
144	Comparative diagenesis at three sites on the Canadian continental margin. Journal of Marine Research, 1998, 56, 1259-1284.	0.3	41

#	Article	IF	CITATIONS
145	Heavy metal distribution in Newark Bay sediments. Marine Pollution Bulletin, 1981, 12, 244-250.	5.0	40
146	Documenting the suboxic zone of the Black Sea via high-resolution real-time redox profiling. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 1740-1755.	1.4	40
147	Planktonic marine iron oxidizers drive iron mineralization under lowâ€oxygen conditions. Geobiology, 2016, 14, 499-508.	2.4	40
148	Iron and sulfide nanoparticle formation and transport in nascent hydrothermal vent plumes. Nature Communications, 2019, 10, 1597.	12.8	40
149	Molecular iodine reduction in seawater, an improved rate equation considering organic compounds. Marine Chemistry, 1995, 48, 143-150.	2.3	39
150	Factors affecting dissolved organic matter dynamics in mixed-redox to anoxic coastal sediments. Geochimica Et Cosmochimica Acta, 2004, 68, 4099-4111.	3.9	39
151	Growth kinetics and long-term stability of CdS nanoparticles in aqueous solution under ambient conditions. Journal of Nanoparticle Research, 2011, 13, 393-404.	1.9	39
152	Reduction Kinetics of Polymeric (Soluble) Manganese (IV) Oxide (MnO2) by Ferrous Iron (Fe2+). Aquatic Geochemistry, 2015, 21, 143-158.	1.3	39
153	Community succession in hydrothermal vent habitats of the Eastern Lau Spreading Center and Valu Fa Ridge, Tonga. Limnology and Oceanography, 2014, 59, 1510-1528.	3.1	38
154	Shelfbreak frontal structure on the continental shelf north of Cape Hatteras. Continental Shelf Research, 1996, 16, 1751-1773.	1.8	37
155	The kinetics of iodine disproportionation: a system of parallel second-order reactions sustained by a multi-species pre-equilibrium. Physical Chemistry Chemical Physics, 2003, 5, 3428.	2.8	37
156	Carbon Cycling and the Coupling Between Proton and Electron Transfer Reactions in Aquatic Sediments in Lake Champlain. Aquatic Geochemistry, 2010, 16, 421-446.	1.3	37
157	Sulfide Oxidation across Diffuse Flow Zones of Hydrothermal Vents. Aquatic Geochemistry, 2011, 17, 583-601.	1.3	37
158	Mn Cycling in Marine Biofilms: effect on the Rate of Localized Corrosion. Biofouling, 2003, 19, 139-149.	2.2	37
159	Electrochemical Evidence for Metal Polysulfide Complexes: Tetrasulfide (S2-4) Reactions with Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+. Electroanalysis, 2001, 13, 21-29.	2.9	36
160	Porewater redox species and processes in the Black Sea sediments. Chemical Geology, 2007, 245, 254-274.	3.3	36
161	Trace metal concentration and partitioning in the first 1.5 m of hydrothermal vent plumes along the Mid-Atlantic Ridge: TAG, Snakepit, and Rainbow. Chemical Geology, 2015, 412, 117-131.	3.3	36
162	Spectrophotometric measurement of seawater carbohydrate concentrations in neritic and oceanic waters from the U.S. Middle Atlantic Bight and the Delaware estuary. Marine Chemistry, 2002, 77, 143-156.	2.3	35

#	Article	IF	CITATIONS
163	Electrochemical Evidence for Pentasulfide Complexes with Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+. Aquatic Geochemistry, 1999, 5, 29-57.	1.3	34
164	Voltammetric (Micro)Electrodes for the In Situ Study of Fe ²⁺ Oxidation Kinetics in Hot Springs and S ₂ O\$m{ _3^{2 - } }\$ Production at Hydrothermal Vents. Electroanalysis, 2008, 20, 280-290.	2.9	34
165	Trace metal diagenesis in sulfidic sediments: Insights from Chesapeake Bay. Chemical Geology, 2017, 452, 47-59.	3.3	34
166	Marine microbial Mn(II) oxidation mediates Cr(III) oxidation and isotope fractionation. Geochimica Et Cosmochimica Acta, 2021, 297, 101-119.	3.9	34
167	Evidence Suggesting Anaerobic Oxidation of the Bisulfide Ion in Chesapeake Bay. Estuaries and Coasts, 1988, 11, 281.	1.7	33
168	Molecular iodine reduction by natural and model organic substances in seawater. Aquatic Geochemistry, 1995, 1, 89-104.	1.3	33
169	Determination of Pb Complexation in Oxic and Sulfidic Waters Using Pseudovoltammetry. Environmental Science & Technology, 2003, 37, 3845-3852.	10.0	33
170	Spectroscopic determination of the size of cadmium sulfide nanoparticles formed under environmentally relevant conditions. Journal of Environmental Monitoring, 2010, 12, 890.	2.1	33
171	Concentrations of reactive Mn(III)-L and MnO2 in estuarine and marine waters determined using spectrophotometry and the leuco base, leucoberbelin blue. Talanta, 2019, 200, 91-99.	5.5	33
172	Acid volatile sulfide—a comment. Marine Chemistry, 2005, 97, 198-205.	2.3	32
173	Short-term and interannual variability of redox-sensitive chemical parameters in hypoxic/anoxic bottom waters of the Chesapeake Bay. Marine Chemistry, 2007, 105, 296-308.	2.3	32
174	Reduced sulfur in the hypersaline anoxic basins of the Mediterranean Sea. Marine Chemistry, 1990, 31, 137-152.	2.3	31
175	Kinetics and Mechanism of Trithionate and Tetrathionate Oxidation at Low pH by Hydroxyl Radicals. Aquatic Geochemistry, 2003, 9, 145-164.	1.3	31
176	Interrelationships Between Vent Fluid Chemistry, Temperature, Seismic Activity, and Biological Community Structure at a Mussel-Dominated, Deep-Sea Hydrothermal Vent Along the East Pacific Rise. Journal of Shellfish Research, 2008, 27, 177-190.	0.9	31
177	Boron-11 nuclear magnetic resonance chemical shift assignments for monohalogenated decaborane(14) isomers. Journal of the American Chemical Society, 1974, 96, 4404-4410.	13.7	30
178	Estuarine distributions of dissolved titanium. Marine Chemistry, 1992, 37, 83-103.	2.3	30
179	Distribution of mega fauna on sulfide edifices on the Eastern Lau Spreading Center and Valu Fa Ridge. Deep-Sea Research Part I: Oceanographic Research Papers, 2013, 72, 48-60.	1.4	30
180	The Speciation and Mobility of Mn and Fe in Estuarine Sediments. Aquatic Geochemistry, 2019, 25, 3-26.	1.3	30

#	Article	IF	CITATIONS
181	On the existence of free and metal complexed sulfide in the Arabian Sea and its oxygen minimum zone. Deep-Sea Research Part II: Topical Studies in Oceanography, 1997, 44, 1381-1390.	1.4	29
182	Hydrothermal Vent Mussel Habitat Chemistry, Pre- and Post-Eruption at 9°50â€2North on the East Pacific Rise. Journal of Shellfish Research, 2008, 27, 169-175.	0.9	29
183	Chemistry, Temperature, and Faunal Distributions at Diffuse-Flow Hydrothermal Vents: Comparison of Two Geologically Distinct Ridge Systems. Oceanography, 2012, 25, 234-245.	1.0	28
184	Light-Dependent Sulfide Oxidation in the Anoxic Zone of the Chesapeake Bay Can Be Explained by Small Populations of Phototrophic Bacteria. Applied and Environmental Microbiology, 2015, 81, 7560-7569.	3.1	28
185	Reduction of Manganese Oxides: Thermodynamic, Kinetic and Mechanistic Considerations for One- Versus Two-Electron Transfer Steps. Aquatic Geochemistry, 2018, 24, 257-277.	1.3	28
186	Largeâ€scale penetration of Gulf Stream water onto the Continental Shelf north of Cape Hatteras. Geophysical Research Letters, 1992, 19, 373-376.	4.0	27
187	Results of the Gas-Phase Sulfur Intercomparison Experiment (GASIE): Overview of experimental setup, results and general conclusions. Journal of Geophysical Research, 1997, 102, 16219-16236.	3.3	27
188	Adaptation of chemosynthetic microorganisms to elevated mercury concentrations in deep-sea hydrothermal vents. Limnology and Oceanography, 2009, 54, 41-49.	3.1	27
189	Using in situ voltammetry as a tool to identify and characterize habitats of iron-oxidizing bacteria: from fresh water wetlands to hydrothermal vent sites. Environmental Sciences: Processes and Impacts, 2014, 16, 2117-2126.	3.5	27
190	Kinetics of the Reactions of Water, Hydroxide Ion and Sulfide Species with CO2, OCS and CS2: Frontier Molecular Orbital Considerations. Aquatic Geochemistry, 2004, 10, 81-97.	1.3	25
191	Iron(III) Coordination Chemistry of Alterobactin A:Â A Siderophore from the Marine BacteriumAlteromonas luteoviolacea. Inorganic Chemistry, 2005, 44, 7671-7677.	4.0	25
192	Microbial biofilms associated with fluid chemistry and megafaunal colonization at post-eruptive deep-sea hydrothermal vents. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 121, 31-40.	1.4	25
193	Dissolved iodine behavior in estuaries along the east coast of the United States. Marine Chemistry, 1988, 25, 95-106.	2.3	24
194	Variation in Sulfur Speciation with Shellfish Presence at a Lau Basin Diffuse Flow Vent Site. Journal of Shellfish Research, 2008, 27, 163-168.	0.9	24
195	Earthquake-induced turbidite deposition as a previously unrecognized sink for hydrogen sulfide in the Black Sea sediments. Marine Chemistry, 2010, 121, 176-186.	2.3	24
196	Growth of magnetotactic sulfateâ€reducing bacteria in oxygen concentration gradient medium. Environmental Microbiology Reports, 2016, 8, 1003-1015.	2.4	24
197	Time-series chemical and temperature habitat characterization of diffuse flow hydrothermal sites at 9°50′N East Pacific Rise. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 1616-1621.	1.4	22
198	Peripheral communities of the Eastern Lau Spreading Center and Valu Fa Ridge: community composition, temporal change and comparison to nearâ€vent communities. Marine Ecology, 2016, 37, 599-617.	1.1	22

#	Article	IF	CITATIONS
199	Oxidative Formation and Removal of Complexed Mn(III) by Pseudomonas Species. Frontiers in Microbiology, 2018, 9, 560.	3.5	22
200	Pseudopolarographic Determination of Cd2+Complexation in Freshwater. Environmental Science & Technology, 2006, 40, 5388-5394.	10.0	21
201	Development of a rate law for arsenite oxidation by manganese oxides. Geochimica Et Cosmochimica Acta, 2019, 250, 251-267.	3.9	21
202	On the speciation of metals in the water column of a polluted estuary. Marine Pollution Bulletin, 1986, 17, 535-542.	5.0	20
203	Disproportionation and reduction of molecular iodine added to seawater. Marine Chemistry, 1995, 51, 55-60.	2.3	20
204	Comment on "Confirmation of a sulfur-rich layer on pyrite after oxidative dissolution by Fe(III) ions around pH 2―by K. Sasaki, M. Tsunekawa, T. Ohtsuka, and H. Konno. Geochimica Et Cosmochimica Acta, 1997, 61, 3269-3271.	3.9	20
205	An anion chromatography/ultraviolet detection method to determine nitrite, nitrate, and sulfide concentrations in saline (pore) waters. Marine Chemistry, 2002, 77, 1-6.	2.3	20
206	Speciation of Dissolved Sulfur in Salt Marshes by Polarographic Methods. ACS Symposium Series, 1986, , 340-355.	0.5	19
207	Lithium Diphenylphosphide and Diphenyl(Trimethylsilyl)Phosphine. Inorganic Syntheses, 2007, , 186-188.	0.3	19
208	Pre- and post-eruption diffuse flow variability among tubeworm habitats at 9°50′ north on the East Pacific Rise. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 1607-1615.	1.4	19
209	Developing Autonomous Observing Systems for Micronutrient Trace Metals. Frontiers in Marine Science, 2019, 6, .	2.5	19
210	Influence of Organic Ligands on the Redox Properties of Fe(II) as Determined by Mediated Electrochemical Oxidation. Environmental Science & Technology, 2022, 56, 9123-9132.	10.0	19
211	Proton magnetic resonance spectra and assignments of strychnine and selectively deuterated strychnine. Journal of Magnetic Resonance, 1974, 15, 122-131.	0.5	18
212	Carbon monoxide-borane adducts with tertiary amines. Journal of the American Chemical Society, 1974, 96, 3071-3073.	13.7	18
213	Dissolved Sulfides in the Oxic Water Column of San Francisco Bay, California. Estuaries and Coasts, 1993, 16, 567.	1.7	18
214	Kinetics of disproportionation of hypoiodous acid. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 3639.	1.7	17
215	An Investigation into the Suitability of Bismuth as an Alternative to Gold-Amalgam as a Working Electrode for the In Situ Determination of Chemical Redox Species in the Natural Environment. Electroanalysis, 2006, 18, 1167-1172.	2.9	17
216	Solid‧tate Au/Hg Microelectrode for the Investigation of Fe and Mn Cycling in a Freshwater Wetland: Implications for Methane Production. Electroanalysis, 2008, 20, 233-239.	2.9	17

#	Article	IF	CITATIONS
217	Metal–organic complexation in the marine environment. Geochemical Transactions, 2001, 2, 65.	0.7	16
218	Shift of algal community structure in dead end lagoons of the Delaware Inland Bays during seasonal anoxia. Aquatic Microbial Ecology, 2006, 44, 279-290.	1.8	16
219	Recent sedimentation in the Black Sea: New insights from radionuclide distributions and sulfur isotopes. Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 66, 103-113.	1.4	16
220	Phototrophic sulfide oxidation: environmental insights and a method for kinetic analysis. Frontiers in Microbiology, 2013, 4, 382.	3.5	16
221	Acetylenotrophy: a hidden but ubiquitous microbial metabolism?. FEMS Microbiology Ecology, 2018, 94,	2.7	14
222	Abiotic synthesis of graphite in hydrothermal vents. Nature Communications, 2019, 10, 5179.	12.8	14
223	Cycling of W and Mo species in natural sulfidic waters and their sorption mechanisms on MnO2 and implications for paired W and Mo records as a redox proxy. Geochimica Et Cosmochimica Acta, 2021, 295, 24-48.	3.9	14
224	Ligand Effects on Biotic and Abiotic Fe(II) Oxidation by the Microaerophile <i>Sideroxydans lithotrophicus</i> . Environmental Science & Technology, 2021, 55, 9362-9371.	10.0	14
225	Fe-catalyzed sulfide oxidation in hydrothermal plumes is a source of reactive oxygen species to the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
226	Sulfur and lodine Speciation in the Water Column of the Black Sea. , 1991, , 187-204.		14
227	Polarographic analysis of sulfate ion in sea water samples. Analytical Chemistry, 1975, 47, 2058-2059.	6.5	13
228	Tidal and Seasonal Variations of Sulfate Ion in a New Jersey Marsh System. Estuaries and Coasts, 1982, 5, 189.	1.7	13
229	Partial recovery of Newark Bay, NJ, following pollution abatement. Marine Pollution Bulletin, 1983, 14, 188-196.	5.0	13
230	Chemical and biological reduction of Mn(III)-pyrophosphate complexes: Potential importance of dissolved Mn(III) as an environmental oxidant. Geochimica Et Cosmochimica Acta, 1995, 59, 885-894.	3.9	13
231	Reactivity of Dissolved Mn(III) Complexes and Mn(IV) Species with Reductants: Mn Redox Chemistry Without a Dissolution Step?. ACS Symposium Series, 1999, , 265-280.	0.5	13
232	Determination of stability constants for metal–ligand complexes using the voltammetric oxidation wave of the anion/ligand and the DeFord and Hume formalism. Talanta, 2000, 51, 11-20.	5.5	13
233	A Continuous Flow Electrochemical Cell for Analysis of Chemical Species and Ions at High Pressure: Laboratory, Shipboard, and Hydrothermal Vent Results. ACS Symposium Series, 2002, , 54-72.	0.5	13
234	Application of EIS with Au–Hg microelectrode in determining electron transfer mechanisms. Electrochimica Acta, 2006, 51, 1524-1533.	5.2	13

#	Article	IF	CITATIONS
235	Temporal trends in vent fluid iron and sulfide chemistry following the 2005/2006 eruption at East Pacific Rise, 9°50′N. Geochemistry, Geophysics, Geosystems, 2013, 14, 759-765.	2.5	13
236	Distribution and concentration of soluble manganese(II), soluble reactive Mn(III)-L, and particulate MnO2 in the Northwest Atlantic Ocean. Marine Chemistry, 2020, 226, 103858.	2.3	13
237	The Suboxic Zone of the Black Sea. , 1999, , 75-91.		13
238	Oxygen dynamics in a well mixed estuary, the lower Delaware Bay, USA. Marine Chemistry, 2009, 117, 11-20.	2.3	12
239	Response to Comment on "Determination of Metal (Bi)Sulfide Stability Constants of Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+by Voltammetric Methods― Environmental Science & Technology, 1996, 30, 3640-3641.	10.0	11
240	Use of Voltammetry to Monitor O ₂ Using Au/Hg Electrodes and to Control Physical Sensors on an Unattended Observatory in the Delaware Bay. Electroanalysis, 2007, 19, 2110-2116.	2.9	11
241	Distribution of desferrioxamine-B-extractable soluble manganese(III) and particulate MnO2 in the St. Lawrence Estuary, Canada. Marine Chemistry, 2019, 208, 70-82.	2.3	11
242	Voltammetric Evidence Suggesting Ag Speciation Is Dominated by Sulfide Complexation in River Water. ACS Symposium Series, 2002, , 371-387.	0.5	10
243	A model of phototrophic sulfide oxidation in a stratified estuary. Limnology and Oceanography, 2017, 62, 1853-1867.	3.1	10
244	Hydrothermal Vents Are a Source of Old Refractory Organic Carbon to the Deep Ocean. Geophysical Research Letters, 2021, 48, e2021GL094869.	4.0	10
245	In Situ Voltammetry at Deep-Sea Hydrothermal Vents. ACS Symposium Series, 2002, , 40-51.	0.5	9
246	Effects of a commercial, suspended eastern oyster nursery upon nutrient and sediment chemistry in a temperate, coastal embayment. Aquaculture Environment Interactions, 2012, 3, 65-79.	1.8	9
247	Thermodynamic Redox Calculations for One and Two Electron Transfer Steps: Implications for Halide Oxidation and Halogen Environmental Cycling. ACS Symposium Series, 2011, , 15-35.	0.5	8
248	Mn speciation at nanomolar concentrations with a porphyrin competitive ligand and UV–vis measurements. Talanta, 2019, 200, 15-21.	5.5	8
249	A durable and inexpensive pump profiler to monitor stratified water columns with high vertical resolution. Talanta, 2019, 199, 415-424.	5.5	8
250	In Situ Sulfur Speciation Using Au/Hg Microelectrodes as an Aid to Microbial Characterization of an Intertidal Salt Marsh Microbial Mat. ACS Symposium Series, 2002, , 283-304.	0.5	7
251	Determination of ambient dissolved metal ligand complexation parameters via kinetics and pseudo-voltammetry experiments. Marine Chemistry, 2021, 234, 103998.	2.3	7
252	Preface [to special section on Results of the Gas-Phase Sulfur Dioxide Intercomparison Experiment (GASIE)] : Historical background. Journal of Geophysical Research, 1997, 102, 16215-16217.	3.3	6

#	Article	IF	CITATIONS
253	Introduction:Â Chemical Oceanography. Chemical Reviews, 2007, 107, 305-307.	47.7	6
254	Characterisation of highly ordered pyrolytic graphite with covalently attached ferritin by electron probe microanalysis. Analyst, The, 1988, 113, 341.	3.5	5
255	8. Metal Sulfide Complexes and Clusters. , 2006, , 421-504.		5
256	Voltammetry: An In Situ Tool to Monitor the Health of Ecosystems. Electroanalysis, 2007, 19, 2051-2058.	2.9	5
257	Kinetics and mechanism of polysulfides and elemental sulfur formation by a reaction between hydrogen sulfide and Î-MnO2. Geochimica Et Cosmochimica Acta, 2021, 313, 21-37.	3.9	5
258	Proton magnetic resonance spectra and assignments of neostrychnine and 18-oxostrychnine. Journal of Magnetic Resonance, 1974, 15, 132-141.	0.5	3
259	Infrared Spectra of Trimethylamine-Carbon Monoxide-Borane and its Deuterated Derivatives. Applied Spectroscopy, 1974, 28, 427-430.	2.2	3
260	Differential Behavior of Metal Sulfides in Hydrothermal Plumes and Diffuse Flows. ACS Earth and Space Chemistry, 2022, 6, 1429-1442.	2.7	3
261	Voltammetric methods of sulfate ion analysis in natural waters. Marine Chemistry, 1978, 6, 117-124.	2.3	2
262	210Po and210Pb disequilibrium in the hydrothermal vent fluids and chimney deposits from Juan de Fuca Ridge. Geophysical Research Letters, 1995, 22, 3175-3178.	4.0	2
263	An Introduction to the Major Chemical Components Released from Hydrothermal Vents. , 2014, , .		2
264	Copepod assemblages along a hydrothermal stress gradient at diffuse flow habitats within the ABE vent site (Eastern Lau Spreading Center, Southwest Pacific). Deep-Sea Research Part I: Oceanographic Research Papers, 2021, 173, 103532.	1.4	2
265	Activation of diatomic and triatomic molecules for the synthesis of organic compounds: Metal catalysis at the subseafloor biosphere. Geophysical Monograph Series, 2004, , 191-198.	0.1	1
266	Preface to John W. Morse Special Issue of Aquatic Geochemistry. Aquatic Geochemistry, 2011, 17, 307.	1.3	1
267	Voltammetric Characterization of Dissolved Cadmium Sulfide Species. Electroanalysis, 2011, 23, 2735-2742.	2.9	1
268	Covalent Bonding. , 0, , 123-188.		1
269	Passing the Editorial Baton. Aquatic Geochemistry, 2018, 24, 1-2.	1.3	1
270	The Abiotic Nitrite Oxidation by Ligand-Bound Manganese (III): The Chemical Mechanism. Aquatic Geochemistry, 2021, 27, 207.	1.3	1

#	Article	IF	CITATIONS
271	The Application of Electrochemical Tools for In Situ Measurements in Aquatic Systems. , 0, .		1
272	ACS Geochemistry division medal. Organic Geochemistry, 2004, 35, IX.	1.8	0
273	Acceptance of the 2004 Clair C. Patterson award. Geochimica Et Cosmochimica Acta, 2006, 70, S14-S15.	3.9	0
274	Fred T. Mackenzie: Gentleman, Scholar, Mountaineer and Model Colleague. Aquatic Geochemistry, 2013, 19, 347-351.	1.3	0
275	Elemental Sulfur Analysis. Geophysical Monograph Series, 0, , 273-274.	0.1	0
276	Workshop Report: Inorganic and Radioactive Properties. Geophysical Monograph Series, 2013, , 213-219.	0.1	0
277	Determination of Dissolved Oxygen, Hydrogen Sulfide, Iron(II), and Manganese(II) in Wetland Pore Waters. Soil Science Society of America Book Series, 0, , 87-106.	0.3	0
278	Reactivity of Transition Metal Complexes: Thermodynamics, Kinetics and Catalysis. , 2016, , 305-355.		0
279	Metal Sulfides in the Environment and in Bioinorganic Chemistry. , 0, , 390-405.		0
280	Oxidation-Reduction Reactions (Redox). , 2016, , 24-44.		0
281	Citation Honoring Frank J. Millero as the 2011 Victor M. Goldschmidt Awardee. Geochimica Et Cosmochimica Acta, 2017, 219, 177.	3.9	Ο