Adeel Razi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2768246/publications.pdf

Version: 2024-02-01

91	5,058	136885	118793
papers	citations	h-index	g-index
115	115	115	5413
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effective connectivity during face processing in major depression – distinguishing markers of pathology, risk, and resilience. Psychological Medicine, 2023, 53, 4139-4151.	2.7	8
2	Imbalanced basal ganglia connectivity is associated with motor deficits and apathy in Huntington's disease. Brain, 2022, 145, 991-1000.	3.7	11
3	Rostral anterior cingulate network effective connectivity in depressed adolescents and associations with treatment response in a randomized controlled trial. Neuropsychopharmacology, 2022, 47, 1240-1248.	2.8	11
4	Reduced Precision Underwrites Ego Dissolution and Therapeutic Outcomes Under Psychedelics. Frontiers in Neuroscience, 2022, 16, 827400.	1.4	4
5	A mathematical perspective on edge-centric brain functional connectivity. Nature Communications, 2022, 13, 2693.	5.8	31
6	Neurofilament light-associated connectivity in young-adult Huntington's disease is related to neuronal genes. Brain, 2022, 145, 3953-3967.	3.7	3
7	Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A Review. IEEE Reviews in Biomedical Engineering, 2021, 14, 139-155.	13.1	148
8	Parcels and particles: Markov blankets in the brain. Network Neuroscience, 2021, 5, 211-251.	1.4	48
9	Tracking Huntington's Disease Progression Using Motor, Functional, Cognitive, and Imaging Markers. Movement Disorders, 2021, 36, 2282-2292.	2.2	10
10	Effective Connectivity of Fronto-Striato-Thalamic Circuitry Across the Psychosis Continuum. Biological Psychiatry, 2021, 89, S356.	0.7	2
11	Spectral dynamic causal modelling in healthy women reveals brain connectivity changes along the menstrual cycle. Communications Biology, 2021, 4, 954.	2.0	20
12	Neural network modelling reveals changes in directional connectivity between cortical and hypothalamic regions with increased BMI. International Journal of Obesity, 2021, 45, 2447-2454.	1.6	11
13	Blue-Light Therapy Strengthens Resting-State Effective Connectivity within Default-Mode Network after Mild TBI. Journal of Central Nervous System Disease, 2021, 13, 117957352110150.	0.7	7
14	Identification of community structure-based brain states and transitions using functional MRI. NeuroImage, 2021, 244, 118635.	2.1	4
15	A Generative Model to Synthesize EEG Data for Epileptic Seizure Prediction. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 2322-2332.	2.7	27
16	Progressive modulation of resting-state brain activity during neurofeedback of positive-social emotion regulation networks. Scientific Reports, 2021, 11, 23363.	1.6	7
17	Questions and controversies in the study of time-varying functional connectivity in resting fMRI. Network Neuroscience, 2020, 4, 30-69.	1.4	364
18	The effect of global signal regression on DCM estimates of noise and effective connectivity from resting state fMRI. Neurolmage, 2020, 208, 116435.	2.1	14

#	Article	IF	CITATIONS
19	On Markov blankets and hierarchical self-organisation. Journal of Theoretical Biology, 2020, 486, 110089.	0.8	63
20	The neurophysiological architecture of semantic dementia: spectral dynamic causal modelling of a neurodegenerative proteinopathy. Scientific Reports, 2020, 10, 16321.	1.6	16
21	Leveraging Data Science to Combat COVID-19: A Comprehensive Review. IEEE Transactions on Artificial Intelligence, 2020, 1, 85-103.	3.4	134
22	Brain Injury and Dementia in Pakistan: Current Perspectives. Frontiers in Neurology, 2020, 11, 299.	1.1	13
23	Asymmetric high-order anatomical brain connectivity sculpts effective connectivity. Network Neuroscience, 2020, 4, 871-890.	1.4	9
24	Bayesian fusion and multimodal DCM for EEG and fMRI. NeuroImage, 2020, 211, 116595.	2.1	30
25	Second waves, social distancing, and the spread of COVID-19 across the USA. Wellcome Open Research, 2020, 5, 103.	0.9	20
26	The physiological effects of noninvasive brain stimulation fundamentally differ across the human cortex. Science Advances, 2020, 6, eaay2739.	4.7	73
27	Dynamic causal modelling of COVID-19. Wellcome Open Research, 2020, 5, 89.	0.9	32
28	Dynamic causal modelling of COVID-19. Wellcome Open Research, 2020, 5, 89.	0.9	41
29	Second waves, social distancing, and the spread of COVID-19 across America. Wellcome Open Research, 2020, 5, 103.	0.9	40
30	Effective immunity and second waves: a dynamic causal modelling study. Wellcome Open Research, 2020, 5, 204.	0.9	6
31	Convergence of cortical types and functional motifs in the human mesiotemporal lobe. ELife, 2020, 9, .	2.8	46
32	Effective immunity and second waves: a dynamic causal modelling study. Wellcome Open Research, 2020, 5, 204.	0.9	7
33	Transdiagnostic variations in impulsivity and compulsivity in obsessive-compulsive disorder and gambling disorder correlate with effective connectivity in cortical-striatal-thalamic-cortical circuits. NeuroImage, 2019, 202, 116070.	2.1	40
34	Inferring neural signalling directionality from undirected structural connectomes. Nature Communications, 2019, 10, 4289.	5.8	69
35	Effective connectivity changes in LSD-induced altered states of consciousness in humans. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2743-2748.	3.3	186
36	Dynamic causal modelling of fluctuating connectivity in resting-state EEG. NeuroImage, 2019, 189, 476-484.	2.1	37

#	Article	IF	CITATIONS
37	A guide to group effective connectivity analysis, part 1: First level analysis with DCM for fMRI. Neurolmage, 2019, 200, 174-190.	2.1	242
38	Using resting-state DMN effective connectivity to characterize the neurofunctional architecture of empathy. Scientific Reports, 2019, 9, 2603.	1.6	26
39	Volitional modulation of higher-order visual cortex alters human perception. Neurolmage, 2019, 188, 291-301.	2.1	2
40	Dynamic causal modelling revisited. Neurolmage, 2019, 199, 730-744.	2.1	196
41	The Hierarchical Organization of the Default, Dorsal Attention and Salience Networks in Adolescents and Young Adults. Cerebral Cortex, 2018, 28, 726-737.	1.6	144
42	Altered intrinsic and extrinsic connectivity in schizophrenia. NeuroImage: Clinical, 2018, 17, 704-716.	1.4	55
43	Brain Regions Showing White Matter Loss inÂHuntington's Disease Are Enriched for Synaptic and Metabolic Genes. Biological Psychiatry, 2018, 83, 456-465.	0.7	79
44	Dynamic effective connectivity in resting state fMRI. Neurolmage, 2018, 180, 594-608.	2.1	100
45	E11â€Compensation in huntington's disease. , 2018, , .		0
46	Testing a longitudinal compensation model in premanifest Huntington's disease. Brain, 2018, 141, 2156-2166.	3.7	33
47	A validation of dynamic causal modelling for 7T fMRI. Journal of Neuroscience Methods, 2018, 305, 36-45.	1.3	18
48	Variability and reliability of effective connectivity within the core default mode network: A multi-site longitudinal spectral DCM study. NeuroImage, 2018, 183, 757-768.	2.1	51
49	Computational Modelling of Pathogenic Protein Behaviour-Governing Mechanisms in the Brain. Lecture Notes in Computer Science, 2018, , 532-539.	1.0	0
50	White matter predicts functional connectivity in premanifest Huntington's disease. Annals of Clinical and Translational Neurology, 2017, 4, 106-118.	1.7	38
51	Regression DCM for fMRI. Neurolmage, 2017, 155, 406-421.	2.1	124
52	Large-scale DCMs for resting-state fMRI. Network Neuroscience, 2017, 1, 222-241.	1.4	146
53	Operationalizing compensation over time in neurodegenerative disease. Brain, 2017, 140, 1158-1165.	3.7	62
54	Structural and functional brain network correlates of depressive symptoms in premanifest Huntington's disease. Human Brain Mapping, 2017, 38, 2819-2829.	1.9	28

#	Article	IF	CITATIONS
55	26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3. BMC Neuroscience, 2017, 18, .	0.8	7
56	1609 Length of white matter connexions determine their rate of atrophy in premanifest huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, A9.2-A9.	0.9	0
57	Hierarchical Dynamic Causal Modeling of Resting-State fMRI Reveals Longitudinal Changes in Effective Connectivity in the Motor System after Thalamotomy for Essential Tremor. Frontiers in Neurology, 2017, 8, 346.	1.1	36
58	Editorial: Mapping Psychopathology with fMRI and Effective Connectivity Analysis. Frontiers in Human Neuroscience, 2017, 11, 151.	1.0	4
59	Topological length of white matter connections predicts their rate of atrophy in premanifest Huntington's disease. JCI Insight, 2017, 2, .	2.3	37
60	Mapping Smoking Addiction Using Effective Connectivity Analysis. Frontiers in Human Neuroscience, 2016, 10, 195.	1.0	23
61	D18â€Brain network breakdown and pathophysiological correlates in huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A40.2-A40.	0.9	0
62	D21â€Longitudinal compensation in the cognitive network in huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A42.1-A42.	0.9	0
63	The Connected Brain: Causality, models, and intrinsic dynamics. IEEE Signal Processing Magazine, 2016, 33, 14-35.	4.6	61
64	D20â€Operationalising compensation over time in neurodegenerative disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A41.2-A41.	0.9	0
65	D22â€Compensation in preclinical huntington's disease: evidence from the track-on HD study. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A42.2-A42.	0.9	0
66	Bayesian model reduction and empirical Bayes for group (DCM) studies. Neurolmage, 2016, 128, 413-431.	2.1	475
67	Extrinsic and Intrinsic Brain Network Connectivity Maintains Cognition across the Lifespan Despite Accelerated Decay of Regional Brain Activation. Journal of Neuroscience, 2016, 36, 3115-3126.	1.7	185
68	Compensation in Preclinical Huntington's Disease: Evidence From the Track-On HD Study. EBioMedicine, 2015, 2, 1420-1429.	2.7	122
69	Mapping the smoking addiction using dynamic causal modelling at rest. BMC Neuroscience, 2015, 16 , .	0.8	0
70	Tight upper bounds on average detection probability in cooperative relay networks with selection combiner. Transactions on Emerging Telecommunications Technologies, 2015, 26, 340-345.	2.6	9
71	Construct validation of a DCM for resting state fMRI. NeuroImage, 2015, 106, 1-14.	2.1	245
72	Selective vulnerability of Rich Club brain regions is an organizational principle of structural connectivity loss in Huntington's disease. Brain, 2015, 138, 3327-3344.	3.7	96

#	Article	IF	Citations
73	Sum rates for multi-user MIMO vector perturbation precoding with regularization. Physical Communication, 2014, 13, 187-196.	1.2	0
74	A DCM for resting state fMRI. NeuroImage, 2014, 94, 396-407.	2.1	460
75	On nodes and modes in resting state fMRI. NeuroImage, 2014, 99, 533-547.	2.1	72
76	Analysis of Energy Detector in Cooperative Relay Networks for Cognitive Radios., 2013,,.		8
77	Secrecy Sum-Rates for Multi-User MIMO Regularized Channel Inversion Precoding. IEEE Transactions on Communications, 2012, 60, 3472-3482.	4.9	136
78	User scheduling for multiâ€antenna downland channels with limited feedback. Transactions on Emerging Telecommunications Technologies, 2012, 23, 36-49.	2.6	2
79	Sum rates for regularized multi-user MIMO vector perturbation precoding. , 2011, , .		2
80	Secrecy sum-rates for multi-user MIMO linear precoding. , 2011, , .		10
81	Performance of Vector Perturbation Multiuser MIMO Systems over Correlated Channels., 2010,,.		4
82	Comparison of time domain and frequency domain equalization for HSDPA channel. , 2010, , .		0
83	Performance Analysis of Multibranch Dual-Hop Nonregenerative Relay Systems with EGC in Nakagami-m Channels. Eurasip Journal on Wireless Communications and Networking, 2010, 2010, .	1.5	0
84	Sum rates, rate allocation, and user scheduling for multi-user MIMO vector perturbation precoding. IEEE Transactions on Wireless Communications, 2010, 9, 356-365.	6.1	40
85	Sum Rates and User Scheduling for Multi-User MIMO Vector Perturbation Precoding. , 2009, , .		5
86	Performance Analysis of Multi-Branch Non-Regenerative Relay Systems with EGC in Nakagami-m Channels., 2009,,.		1
87	Comparison of time domain and frequency domain equalizers for indoor UWB systems. , 2008, , .		1
88	Feedback reduction schemes for MIMO broadcast channels. , 2008, , .		1
89	Second waves, social distancing, and the spread of COVID-19 across the USA. Wellcome Open Research, 0, 5, 103.	0.9	2
90	Testing and tracking in the UK: A dynamic causal modelling study. Wellcome Open Research, 0, 5, 144.	0.9	3

#	Article	IF	CITATIONS
91	Testing and tracking in the UK: A dynamic causal modelling study. Wellcome Open Research, 0, 5, 144.	0.9	12