Meredith O'Keeffe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2768025/publications.pdf

Version: 2024-02-01

81 papers

8,559 citations

66343 42 h-index 79 g-index

85 all docs

85 docs citations

85 times ranked 9400 citing authors

#	Article	IF	CITATIONS
1	Discordance in STING-Induced Activation and Cell Death Between Mouse and Human Dendritic Cell Populations. Frontiers in Immunology, 2022, 13, 794776.	4.8	10
2	In pursuit of biomarkers for predicting susceptibility to activityâ€based anorexia in adolescent female rats. International Journal of Eating Disorders, 2022, 55, 664-677.	4.0	9
3	The Influence of Antibiotic Resistance on Innate Immune Responses to Staphylococcus aureus Infection. Antibiotics, 2022, $11,542$.	3.7	3
4	Clonal multi-omics reveals Bcor as a negative regulator of emergency dendritic cell development. Immunity, 2021, 54, 1338-1351.e9.	14.3	25
5	Elucidating the Motif for CpG Oligonucleotide Binding to the Dendritic Cell Receptor DEC-205 Leads to Improved Adjuvants for Liver-Resident Memory. Journal of Immunology, 2021, 207, 1836-1847.	0.8	3
6	Daptomycinâ€resistant <i>Staphylococcus aureus</i> clinical isolates are poorly sensed by dendritic cells. Immunology and Cell Biology, 2020, 98, 42-53.	2.3	5
7	Plasmacytoid dendritic cells from parent strains of the NZB/W F1 lupus mouse contribute different characteristics to autoimmune propensity. Immunology and Cell Biology, 2020, 98, 203-214.	2.3	1
8	Migration of murine intestinal dendritic cell subsets upon intrinsic and extrinsic TLR3 stimulation. European Journal of Immunology, 2020, 50, 1525-1536.	2.9	10
9	Dendritic Cells and Their Roles in Anti-Tumour Immunity. , 2020, , .		0
10	RNF41 regulates the damage recognition receptor Clec9A and antigen cross-presentation in mouse dendritic cells. ELife, 2020, 9 , .	6.0	16
11	Monitoring Dendritic Cell Activation and Maturation. Methods in Molecular Biology, 2019, 1988, 403-418.	0.9	8
12	Dendritic Cell Responses and Function in Malaria. Frontiers in Immunology, 2019, 10, 357.	4.8	27
13	Rapid interferon independent expression of IFITM3 following T cell activation protects cells from influenza virus infection. PLoS ONE, 2019, 14, e0210132.	2.5	28
14	Different Life Cycle Stages of Plasmodium falciparum Induce Contrasting Responses in Dendritic Cells. Frontiers in Immunology, 2019, 10, 32.	4.8	9
15	Dendritic cell subsets. Seminars in Cell and Developmental Biology, 2018, 84, 11-21.	5.0	167
16	PLD3 and PLD4 are single-stranded acid exonucleases that regulate endosomal nucleic-acid sensing. Nature Immunology, 2018, 19, 942-953.	14.5	88
17	CD14 is not involved in the uptake of synthetic CpG oligonucleotides. Molecular Immunology, 2017, 81, 52-58.	2.2	4
18	The Bacterial Peptidoglycan-Sensing Molecules NOD1 and NOD2 Promote CD8+Thymocyte Selection. Journal of Immunology, 2017, 198, 2649-2660.	0.8	31

#	Article	lF	CITATIONS
19	SIDT2 Transports Extracellular dsRNA into the Cytoplasm for Innate Immune Recognition. Immunity, 2017, 47, 498-509.e6.	14.3	109
20	Plasmacytoid dendritic cells are short-lived: reappraising the influence of migration, genetic factors and activation on estimation of lifespan. Scientific Reports, 2016, 6, 25060.	3.3	40
21	T Cell Help Amplifies Innate Signals in CD8 + DCs for Optimal CD8 + T Cell Priming. Cell Reports, 2016, 14, 586-597.	6.4	62
22	A central role for hepatic conventional dendritic cells in supporting Th2 responses during helminth infection. Immunology and Cell Biology, 2016, 94, 400-410.	2.3	22
23	Contrasting Inducible Knockdown of the Auxiliary PTEX Component PTEX88 in P. falciparum and P. berghei Unmasks a Role in Parasite Virulence. PLoS ONE, 2016, 11, e0149296.	2.5	31
24	CD117+ Dendritic and Mast Cells Are Dependent on RasGRP4 to Function as Accessory Cells for Optimal Natural Killer Cell-Mediated Responses to Lipopolysaccharide. PLoS ONE, 2016, 11, e0151638.	2.5	6
25	Human dendritic cell subsets and function in health and disease. Cellular and Molecular Life Sciences, 2015, 72, 4309-4325.	5.4	153
26	Maintaining dendritic cell viability in culture. Molecular Immunology, 2015, 63, 264-267.	2.2	18
27	FLT3-Ligand Treatment of Humanized Mice Results in the Generation of Large Numbers of CD141+ and CD1c+ Dendritic Cells In Vivo. Journal of Immunology, 2014, 192, 1982-1989.	0.8	84
28	Dendritic Cells in Autoimmune Disease. , 2014, , 175-186.		0
29	Inosine-Mediated Modulation of RNA Sensing by Toll-Like Receptor 7 (TLR7) and TLR8. Journal of Virology, 2014, 88, 799-810.	3.4	27
30	Plasmacytoid Dendritic Cell Development. Advances in Immunology, 2013, 120, 105-126.	2.2	43
31	Monitoring Dendritic Cell Activation and Maturation. Methods in Molecular Biology, 2013, 960, 359-370.	0.9	7
32	The NF-κB1 transcription factor prevents the intrathymic development of CD8 T cells with memory properties. EMBO Journal, 2012, 31, 692-706.	7.8	21
33	Conventional dendritic cells may be ideal targets for vaccine strategies in the aged. Immunology and Cell Biology, 2012, 90, 665-666.	2.3	3
34	DEC-205 is a cell surface receptor for CpG oligonucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16270-16275.	7.1	155
35	Nonplasmacytoid, High IFN-α–Producing, Bone Marrow Dendritic Cells. Journal of Immunology, 2012, 188, 3774-3783.	0.8	13
36	Dendritic Cell Subsets and Immune Regulation. , 2012, , 89-119.		0

#	Article	IF	CITATIONS
37	Factors determining the spontaneous activation of splenic dendritic cells in culture. Innate Immunity, 2011, 17, 338-352.	2.4	42
38	Quantitative Proteomics Reveals Subset-Specific Viral Recognition in Dendritic Cells. Immunity, 2010, 32, 279-289.	14.3	544
39	Mouse CD8α+ DCs and human BDCA3+ DCs are major producers of IFN-λ in response to poly IC. Journal of Experimental Medicine, 2010, 207, 2703-2717.	8.5	249
40	CD8+, CD8â ⁻ , and Plasmacytoid Dendritic Cell Generation In Vitro Using flt3 Ligand. Methods in Molecular Biology, 2010, 595, 167-176.	0.9	62
41	The Generation of Plasmacytoid and Conventional Dendritic Cells with M-CSF. Methods in Molecular Biology, 2010, 595, 187-193.	0.9	7
42	Differential MHC class II synthesis and ubiquitination confers distinct antigen-presenting properties on conventional and plasmacytoid dendritic cells. Nature Immunology, 2008, 9, 1244-1252.	14.5	202
43	Dendritic Cell Subsets and Toll-Like Receptors. Handbook of Experimental Pharmacology, 2008, , 153-179.	1.8	37
44	M-CSF: a novel plasmacytoid and conventional dendritic cell poietin. Blood, 2008, 111, 150-159.	1.4	101
45	Survival of lethal poxvirus infection in mice depends on TLR9, and therapeutic vaccination provides protection. Journal of Clinical Investigation, 2008, 118, 1776-1784.	8.2	122
46	Putative IKDCs are functionally and developmentally similar to natural killer cells, but not to dendritic cells. Journal of Experimental Medicine, 2007, 204, 2579-2590.	8.5	108
47	Production of interferons by dendritic cells, plasmacytoid cells, natural killer cells, and interferon-producing killer dendritic cells. Blood, 2007, 109, 1165-1173.	1.4	131
48	Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nature Immunology, 2007, 8, 1217-1226.	14.5	713
49	Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nature Immunology, 2006, 7, 663-671.	14.5	531
50	The long-term but not the short-term antiviral effectof IFN-α depends on Flt3 ligand and pDC. European Journal of Immunology, 2006, 36, 1231-1240.	2.9	9
51	Adenovirus efficiently transduces plasmacytoid dendritic cells resulting in TLR9-dependent maturation and IFN-1± production. Journal of Gene Medicine, 2006, 8, 1300-1306.	2.8	99
52	Signal Regulatory Protein Molecules Are Differentially Expressed by CD8â ⁻ ' Dendritic Cells. Journal of Immunology, 2006, 177, 372-382.	0.8	97
53	Distinct roles for the NF-lºB1 and c-Rel transcription factors in the differentiation and survival of plasmacytoid and conventional dendritic cells activated by TLR-9 signals. Blood, 2005, 106, 3457-3464.	1.4	76
54	Activation of plasmacytoid dendritic cells. Immunology and Cell Biology, 2005, 83, 571-577.	2.3	35

#	Article	IF	CITATIONS
55	Fms-like tyrosine kinase 3 ligand administration overcomes a genetically determined dendritic cell deficiency in NOD mice and protects against diabetes development. International Immunology, 2005, 17, 307-314.	4.0	53
56	Protective CD8 T Cell Immunity Triggered by CpG-Protein Conjugates Competes with the Efficacy of Live Vaccines. Journal of Immunology, 2005, 174, 4373-4380.	0.8	93
57	Cutting Edge: Generation of Splenic CD8+ and CD8â [^] Dendritic Cell Equivalents in Fms-Like Tyrosine Kinase 3 Ligand Bone Marrow Cultures. Journal of Immunology, 2005, 174, 6592-6597.	0.8	491
58	Herpes simplex virus type-1 induces IFN-α production via Toll-like receptor 9-dependent and -independent pathways. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11416-11421.	7.1	403
59	Dendritic Cell Populations in Leishmania major -Infected Skin and Draining Lymph Nodes. Infection and Immunity, 2004, 72, 1991-2001.	2.2	55
60	Development of the Dendritic Cell System during Mouse Ontogeny. Journal of Immunology, 2004, 172, 1018-1027.	0.8	126
61	Treatment of neonatal mice with Flt3 ligand leads to changes in dendritic cell subpopulations associated with enhanced IL-12 and IFN- $\hat{l}\pm$ production. European Journal of Immunology, 2004, 34, 1849-1860.	2.9	29
62	Differential production of inflammatory chemokines by murine dendritic cell subsets. Immunobiology, 2004, 209, 163-172.	1.9	69
63	Flt3 Ligand–treated Neonatal Mice Have Increased Innate Immunity Against Intracellular Pathogens and Efficiently Control Virus Infections. Journal of Experimental Medicine, 2003, 197, 575-584.	8.5	63
64	The Lymphoid Past of Mouse Plasmacytoid Cells and Thymic Dendritic Cells. Journal of Immunology, 2003, 170, 4926-4932.	0.8	181
65	Dendritic cell precursor populations of mouse blood: identification of the murine homologues of human blood plasmacytoid pre-DC2 and CD11c+ DC1 precursors. Blood, 2003, 101, 1453-1459.	1.4	152
66	CD8α+ mouse spleen dendritic cells do not originate from the CD8α- dendritic cell subset. Blood, 2003, 102, 601-604.	1.4	56
67	Mouse Plasmacytoid Cells. Journal of Experimental Medicine, 2002, 196, 1307-1319.	8.5	347
68	Effects of administration of progenipoietin 1, Flt-3 ligand, granulocyte colony-stimulating factor, and pegylated granulocyte-macrophage colony-stimulating factor on dendritic cell subsets in mice. Blood, 2002, 99, 2122-2130.	1.4	131
69	Human and mouse plasmacytoid dendritic cells. Human Immunology, 2002, 63, 1103-1110.	2.4	102
70	CpG-DNA aided cross-presentation of soluble antigens by dendritic cells. European Journal of Immunology, 2002, 32, 2356.	2.9	158
71	Differential Production of IL-12, IFN- \hat{l} ±, and IFN- \hat{l} 3 by Mouse Dendritic Cell Subsets. Journal of Immunology, 2001, 166, 5448-5455.	0.8	444
72	Molecular cloning of a C-type lectin superfamily protein differentially expressed by CD8뱉^' splenic dendritic cells. Molecular Immunology, 2001, 38, 365-373.	2.2	42

#	Article	IF	CITATIONS
73	Development of thymic and splenic dendritic cell populations from different hemopoietic precursors. Blood, 2001, 98, 3376-3382.	1.4	152
74	C-Rel Regulates Interleukin 12 P70 Expression in Cd8+ Dendritic Cells by Specifically Inducing <i>p35</i> Gene Transcription. Journal of Experimental Medicine, 2001, 194, 1021-1032.	8.5	162
75	Molecular Cloning of F4/80-Like-Receptor, a Seven-Span Membrane Protein Expressed Differentially by Dendritic Cell and Monocyte-Macrophage Subpopulations. Journal of Immunology, 2001, 167, 3570-3576.	0.8	51
76	The Development, Maturation, and Turnover Rate of Mouse Spleen Dendritic Cell Populations. Journal of Immunology, 2000, 165, 6762-6770.	0.8	368
77	Effect of Granulocyte-Macrophage Colony-Stimulating Factor on the Generation of Epidermal Langerhans Cells. Journal of Interferon and Cytokine Research, 2000, 20, 1071-1076.	1.2	22
78	Interleukin (II)-4 Is a Major Regulatory Cytokine Governing Bioactive IL-12 Production by Mouse and Human Dendritic Cells. Journal of Experimental Medicine, 2000, 192, 823-834.	8.5	336
79	Sheep CD4 + \hat{l} ± \hat{l} ² T cells express novel members of the T19 multigene family. Immunogenetics, 1999, 49, 45-55.	2.4	15
80	Lymph node homing cells biologically enriched for $\hat{I}^3\hat{I}$ T cells express multiple genes from the T19 repertoire. International Immunology, 1994, 6, 1687-1697.	4.0	20
81	A novel multi-gene family of sheep gamma delta T cells. Immunology, 1994, 83, 517-23.	4.4	33