Yu Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2767888/publications.pdf

Version: 2024-02-01

315739 304743 1,553 46 22 38 citations h-index g-index papers 46 46 46 1399 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Chemical Biology Toolbox to Visualize Protein Aggregation in Live Cells. ChemBioChem, 2022, 23, .	2.6	7
2	Detecting the insoluble protein aggregates in live cells using an AIE derivative of fluorescent protein chromophore. Sensors and Actuators B: Chemical, 2022, 353, 131098.	7.8	16
3	Derivatizing Nile Red fluorophores to quantify the heterogeneous polarity upon protein aggregation in the cell. Chemical Communications, 2022, 58, 5407-5410.	4.1	12
4	A Novel Virus Detection Strategy Enabled by TR512-Peptide-Based Bioorthogonal Capture and Enrichment of Preamplified Nucleic Acid. Analytical Chemistry, 2022, 94, 5591-5598.	6.5	8
5	Solvatochromic Cellular Stress Sensors Reveal the Compactness Heterogeneity and Dynamics of Aggregated Proteome. ACS Sensors, 2022, 7, 1919-1925.	7.8	9
6	A quinoline–benzothiazole hybrid as the first near-infrared fluorescent probe for transthyretin. New Journal of Chemistry, 2021, 45, 18453-18458.	2.8	5
7	Quantitative interrogation of protein co-aggregation using multi-color fluorogenic protein aggregation sensors. Chemical Science, 2021, 12, 8468-8476.	7.4	26
8	Covalent Probes for Aggregated Protein Imaging via Michael Addition. Angewandte Chemie - International Edition, 2021, 60, 11335-11343.	13.8	33
9	Covalent Probes for Aggregated Protein Imaging via Michael Addition. Angewandte Chemie, 2021, 133, 11436-11444.	2.0	7
10	Rational Design of Crystallizationâ€Inducedâ€Emission Probes To Detect Amorphous Protein Aggregation in Live Cells. Angewandte Chemie - International Edition, 2021, 60, 16067-16076.	13.8	42
11	Rational Design of Crystallizationâ€Inducedâ€Emission Probes To Detect Amorphous Protein Aggregation in Live Cells. Angewandte Chemie, 2021, 133, 16203-16212.	2.0	4
12	Common Pitfalls and Recommendations for Using a Turbidity Assay to Study Protein Phase Separation. Biochemistry, 2021, 60, 2447-2456.	2.5	5
13	Illuminating Protein Phase Separation: Reviewing Aggregationâ€Induced Emission, Fluorescent Molecular Rotor and Solvatochromic Fluorophore Based Probes. Chemistry - A European Journal, 2021, 27, 14564-14576.	3.3	12
14	A Solvatochromic Fluorescent Probe Reveals Polarity Heterogeneity upon Protein Aggregation in Cells. Angewandte Chemie - International Edition, 2021, 60, 25865-25871.	13.8	46
15	A Solvatochromic Fluorescent Probe Reveals Polarity Heterogeneity upon Protein Aggregation in Cells. Angewandte Chemie, 2021, 133, 26069-26075.	2.0	4
16	Monitoring the Dynamics of Proteome Aggregation in Live Cells Using a Solubilized and Noncovalent Analogue of Fluorescent Protein Chromophores. Analytical Chemistry, 2021, 93, 1717-1724.	6.5	46
17	Frontispiece: Illuminating Protein Phase Separation: Reviewing Aggregationâ€Induced Emission, Fluorescent Molecular Rotor and Solvatochromic Fluorophore Based Probes. Chemistry - A European Journal, 2021, 27, .	3. 3	0
18	A quinoline derived D-A-D type fluorescent probe for sensing tetrameric transthyretin. Bioorganic and Medicinal Chemistry Letters, 2021, 52, 128408.	2.2	4

#	Article	IF	CITATIONS
19	Derivatizing merocyanine dyes to balance their polarity and viscosity sensitivities for protein aggregation detection. Chemical Communications, 2021, 57, 13313-13316.	4.1	9
20	Regulation of Fluorescence Solvatochromism To Resolve Cellular Polarity upon Protein Aggregation. Analytical Chemistry, 2021, 93, 16447-16455.	6. 5	17
21	A General Strategy to Enhance Donorâ€Acceptor Molecules Using Solventâ€Excluding Substituents. Angewandte Chemie - International Edition, 2020, 59, 4785-4792.	13.8	34
22	AggFluor: Fluorogenic Toolbox Enables Direct Visualization of the Multi-Step Protein Aggregation Process in Live Cells. Journal of the American Chemical Society, 2020, 142, 17515-17523.	13.7	90
23	Phosphorylation switches protein disulfide isomerase activity to maintain proteostasis and attenuate ER stress. EMBO Journal, 2020, 39, e103841.	7.8	63
24	Super-Resolution Optical Lithography with DNA. Nano Letters, 2019, 19, 6035-6042.	9.1	7
25	Monitoring Proteome Stress in Live Cells Using HaloTag-Based Fluorogenic Sensor. Methods in Molecular Biology, 2019, 1873, 171-182.	0.9	2
26	A Fluorogenic <i>AggTag</i> Method Based on Halo―and SNAPâ€Tags to Simultaneously Detect Aggregation of Two Proteins in Live Cells. ChemBioChem, 2019, 20, 1078-1087.	2.6	45
27	A SNAP-tag fluorogenic probe mimicking the chromophore of the red fluorescent protein Kaede. Organic and Biomolecular Chemistry, 2019, 17, 1906-1915.	2.8	22
28	Heat Shock Protein Reports on Proteome Stress. Biotechnology Journal, 2018, 13, .	3.5	5
29	A HaloTag-Based Multicolor Fluorogenic Sensor Visualizes and Quantifies Proteome Stress in Live Cells Using Solvatochromic and Molecular Rotor-Based Fluorophores. Biochemistry, 2018, 57, 4663-4674.	2.5	39
30	A Molecular Rotor-Based Halo-Tag Ligand Enables a Fluorogenic Proteome Stress Sensor to Detect Protein Misfolding in Mildly Stressed Proteome. Bioconjugate Chemistry, 2018, 29, 215-224.	3.6	38
31	Modulation of Fluorescent Protein Chromophores To Detect Protein Aggregation with Turn-On Fluorescence. Journal of the American Chemical Society, 2018, 140, 7381-7384.	13.7	147
32	The Cationâ^'Ï€ Interaction Enables a Halo-Tag Fluorogenic Probe for Fast No-Wash Live Cell Imaging and Gel-Free Protein Quantification. Biochemistry, 2017, 56, 1585-1595.	2.5	66
33	AgHalo: A Facile Fluorogenic Sensor to Detect Drugâ€Induced Proteome Stress. Angewandte Chemie - International Edition, 2017, 56, 8672-8676.	13.8	84
34	AgHalo: A Facile Fluorogenic Sensor to Detect Drugâ€Induced Proteome Stress. Angewandte Chemie, 2017, 129, 8798-8802.	2.0	11
35	Arylfluorosulfates Inactivate Intracellular Lipid Binding Protein(s) through Chemoselective SuFEx Reaction with a Binding Site Tyr Residue. Journal of the American Chemical Society, 2016, 138, 7353-7364.	13.7	212
36	Stabilizing the C _H 2 Domain of an Antibody by Engineering in an Enhanced Aromatic Sequon. ACS Chemical Biology, 2016, 11, 1852-1861.	3.4	40

#	Article	IF	CITATION
37	Synthesis of Sulfotyrosineâ€Containing Peptides by Incorporating Fluorosulfated Tyrosine Using an Fmocâ€Based Solidâ€Phase Strategy. Angewandte Chemie, 2016, 128, 1867-1870.	2.0	17
38	Synthesis of Sulfotyrosineâ€Containing Peptides by Incorporating Fluorosulfated Tyrosine Using an Fmocâ€Based Solidâ€Phase Strategy. Angewandte Chemie - International Edition, 2016, 55, 1835-1838.	13.8	43
39	A Fluorogenic Aryl Fluorosulfate for Intraorganellar Transthyretin Imaging in Living Cells and in <i>Caenorhabditis elegans</i> Journal of the American Chemical Society, 2015, 137, 7404-7414.	13.7	86
40	Individual and Collective Contributions of Chaperoning and Degradation to Protein Homeostasis in E.Âcoli. Cell Reports, 2015, 11, 321-333.	6.4	39
41	Fluorescence Turn-On Folding Sensor To Monitor Proteome Stress in Live Cells. Journal of the American Chemical Society, 2015, 137, 11303-11311.	13.7	37
42	Small molecule probes to quantify the functional fraction of a specific protein in a cell with minimal folding equilibrium shifts. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4449-4454.	7.1	32
43	Fluorogenic small molecules requiring reaction with a specific protein to create a fluorescent conjugate for biological imaging–what we know and what we need to learn. Biopolymers, 2014, 101, 484-495.	2.4	8
44	Heat-Shock Response Transcriptional Program Enables High-Yield and High-Quality Recombinant Protein Production in <i>Escherichia coli</i>	3.4	23
45	<i>De Novo</i> -Designed Enzymes as Small-Molecule-Regulated Fluorescence Imaging Tags and Fluorescent Reporters. Journal of the American Chemical Society, 2014, 136, 13102-13105.	13.7	18
46	Stilbene Vinyl Sulfonamides as Fluorogenic Sensors of and Traceless Covalent Kinetic Stabilizers of Transthyretin That Prevent Amyloidogenesis. Journal of the American Chemical Society, 2013, 135, 17869-17880	13.7	33