
Yingwen Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2767592/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nature Energy, 2016, 1, .	39.5	2,186
2	Design and Synthesis of Hierarchical MnO ₂ Nanospheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High Performance Electrochemical Electrodes. Nano Letters, 2010, 10, 2727-2733.	9.1	898
3	Synergistic Effects from Graphene and Carbon Nanotubes Enable Flexible and Robust Electrodes for High-Performance Supercapacitors. Nano Letters, 2012, 12, 4206-4211.	9.1	623
4	More than the lons: The Effects of Silver Nanoparticles on <i>Lolium multiflorum</i> . Environmental Science & Technology, 2011, 45, 2360-2367.	10.0	494
5	Performance enhancement and degradation mechanism identification of a single-atom Co–N–C catalyst for proton exchange membrane fuel cells. Nature Catalysis, 2020, 3, 1044-1054.	34.4	443
6	Size-Controlled Dissolution of Organic-Coated Silver Nanoparticles. Environmental Science & Technology, 2012, 46, 752-759.	10.0	374
7	Significantly Improved Long-Cycle Stability in High-Rate Li–S Batteries Enabled by Coaxial Graphene Wrapping over Sulfur-Coated Carbon Nanofibers. Nano Letters, 2013, 13, 2485-2489.	9.1	314
8	Highly Reversible Mg Insertion in Nanostructured Bi for Mg Ion Batteries. Nano Letters, 2014, 14, 255-260.	9.1	257
9	Highly Reversible Zinc-Ion Intercalation into Chevrel Phase Mo ₆ S ₈ Nanocubes and Applications for Advanced Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 13673-13677.	8.0	256
10	Improving the performance of cobalt–nickel hydroxide-based self-supporting electrodes for supercapacitors using accumulative approaches. Energy and Environmental Science, 2013, 6, 3314.	30.8	223
11	Toxicity Reduction of Polymer-Stabilized Silver Nanoparticles by Sunlight. Journal of Physical Chemistry C, 2011, 115, 4425-4432.	3.1	190
12	Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes. Nanoscale, 2013, 5, 1067-1073.	5.6	188
13	High performance batteries based on hybrid magnesium and lithium chemistry. Chemical Communications, 2014, 50, 9644-9646.	4.1	153
14	Silver nanoparticle-alginate composite beads for point-of-use drinking water disinfection. Water Research, 2013, 47, 3959-3965.	11.3	145
15	Highly active electrolytes for rechargeable Mg batteries based on a [Mg ₂ (μ-Cl) ₂] ²⁺ cation complex in dimethoxyethane. Physical Chemistry Chemical Physics, 2015, 17, 13307-13314.	2.8	126
16	Polymeric Coatings on Silver Nanoparticles Hinder Autoaggregation but Enhance Attachment to Uncoated Surfaces. Langmuir, 2012, 28, 4178-4186.	3.5	112
17	Li _{<i>x</i>} NiO/Ni Heterostructure with Strong Basic Lattice Oxygen Enables Electrocatalytic Hydrogen Evolution with Pt-like Activity. Journal of the American Chemical Society, 2020, 142, 12613-12619.	13.7	103
18	Antimicrobial nanotechnology: its potential for the effective management of microbial drug resistance and implications for research needs in microbial nanotoxicology. Environmental Sciences: Processes and Impacts, 2013, 15, 93-102.	3.5	98

YINGWEN CHENG

#	Article	IF	CITATIONS
19	Electronegative guests in CoSb ₃ . Energy and Environmental Science, 2016, 9, 2090-2098.	30.8	93
20	Rechargeable Mg–Li hybrid batteries: status and challenges. Journal of Materials Research, 2016, 31, 3125-3141.	2.6	92
21	Aqueousâ^'Organic Phase-Transfer of Highly Stable Gold, Silver, and Platinum Nanoparticles and New Route for Fabrication of Gold Nanofilms at the Oil/Water Interface and on Solid Supports. Journal of Physical Chemistry B, 2006, 110, 12311-12317.	2.6	91
22	Deposition of Silver Nanoparticles in Geochemically Heterogeneous Porous Media: Predicting Affinity from Surface Composition Analysis. Environmental Science & amp; Technology, 2011, 45, 5209-5215.	10.0	88
23	Interface Promoted Reversible Mg Insertion in Nanostructured Tin–Antimony Alloys. Advanced Materials, 2015, 27, 6598-6605.	21.0	88
24	Realizing the Full Potential of Insertion Anodes for Mg-Ion Batteries Through the Nanostructuring of Sn. Nano Letters, 2015, 15, 1177-1182.	9.1	87
25	A high-voltage rechargeable magnesium-sodium hybrid battery. Nano Energy, 2017, 34, 188-194.	16.0	84
26	Nanostructured Electrocatalysts for PEM Fuel Cells and Redox Flow Batteries: A Selected Review. ACS Catalysis, 2015, 5, 7288-7298.	11.2	78
27	Electrochemically stable cathode current collectors for rechargeable magnesium batteries. Journal of Materials Chemistry A, 2014, 2, 2473-2477.	10.3	77
28	Manipulating Polysulfide Conversion with Strongly Coupled Fe ₃ O ₄ and Nitrogen Doped Carbon for Stable and High Capacity Lithium–Sulfur Batteries. Advanced Functional Materials, 2019, 29, 1807309.	14.9	75
29	Facile Synthesis of <i>Chevrel</i> Phase Nanocubes and Their Applications for Multivalent Energy Storage. Chemistry of Materials, 2014, 26, 4904-4907.	6.7	73
30	Influence of the Nickel Oxide Nanostructure Morphology on the Effectiveness of Reduced Graphene Oxide Coating in Supercapacitor Electrodes. Journal of Physical Chemistry C, 2014, 118, 2281-2286.	3.1	66
31	Molecular Storage of Mg Ions with Vanadium Oxide Nanoclusters. Advanced Functional Materials, 2016, 26, 3446-3453.	14.9	65
32	Making a commercial carbon fiber cloth having comparable capacitances to carbon nanotubes and graphene in supercapacitors through a "top-down―approach. Nanoscale, 2015, 7, 3285-3291.	5.6	62
33	Toward the design of high voltage magnesium–lithium hybrid batteries using dual-salt electrolytes. Chemical Communications, 2016, 52, 5379-5382.	4.1	60
34	Near surface nucleation and particle mediated growth of colloidal Au nanocrystals. Nanoscale, 2018, 10, 11907-11912.	5.6	48
35	Highly Efficient Oxygen Reduction Electrocatalysts based on Winged Carbon Nanotubes. Scientific Reports, 2013, 3, 3195.	3.3	45
36	Organic solar cells using few-walled carbon nanotubes electrode controlled by the balance between sheet resistance and the transparency. Applied Physics Letters, 2009, 94, 123302.	3.3	44

YINGWEN CHENG

#	Article	IF	CITATIONS
37	Redox Catalytic and Quasi-Solid Sulfur Conversion for High-Capacity Lean Lithium Sulfur Batteries. ACS Nano, 2019, 13, 14540-14548.	14.6	44
38	Carbon Free and Noble Metal Free Ni ₂ Mo ₆ S ₈ Electrocatalyst for Selective Electrosynthesis of H ₂ O ₂ . Advanced Functional Materials, 2021, 31, 2104716.	14.9	44
39	Sulfur-doped zinc oxide (ZnO) Nanostars: Synthesis and simulation of growth mechanism. Nano Research, 2012, 5, 20-26.	10.4	41
40	Organic–inorganic hybrids of Fe–Co polyphenolic network wrapped Fe ₃ O ₄ nanocatalysts for significantly enhanced oxygen evolution. Journal of Materials Chemistry A, 2019, 7, 14302-14308.	10.3	40
41	Carbon Nanomaterials for Flexible Energy Storage. Materials Research Letters, 2013, 1, 175-192.	8.7	38
42	Highâ€Energy and Stable Subfreezing Aqueous Zn–MnO ₂ Batteries with Selective and Pseudocapacitive Zn″on Insertion in MnO ₂ . Advanced Materials, 2022, 34, e2201510.	21.0	36
43	A fast and stable Li metal anode incorporating an Mo ₆ S ₈ artificial interphase with super Li-ion conductivity. Journal of Materials Chemistry A, 2019, 7, 6038-6044.	10.3	34
44	Direct Optical Imaging of Graphene In Vitro by Nonlinear Femtosecond Laser Spectral Reshaping. Nano Letters, 2012, 12, 5936-5940.	9.1	29
45	High rate and stable symmetric potassium ion batteries fabricated with flexible electrodes and solid-state electrolytes. Nanoscale, 2018, 10, 20754-20760.	5.6	29
46	Elastic Na _{<i>x</i>} MoS ₂ -Carbon-BASE Triple Interface Direct Robust Solid–Solid Interface for All-Solid-State Na–S Batteries. Nano Letters, 2020, 20, 6837-6844.	9.1	29
47	Regulating Interfacial Na-Ion Flux via Artificial Layers with Fast Ionic Conductivity for Stable and High-Rate Na Metal Batteries. , 2019, 1, 303-309.		27
48	High rate and cycling stable Li metal anodes enabled with aluminum-zinc oxides modified copper foam. Journal of Energy Chemistry, 2020, 41, 87-92.	12.9	27
49	Synergistic Multisites Fe ₂ Mo ₆ S ₈ Electrocatalysts for Ambient Nitrogen Conversion to Ammonia. ACS Nano, 2021, 15, 16887-16895.	14.6	27
50	Monolithic co-aerogels of carbon/titanium dioxide as three dimensional nanostructured electrodes for energy storage. Journal of Power Sources, 2012, 218, 140-147.	7.8	20
51	Stable high capacity cycling of Li metal via directed and confined Li growth with robust composite sponge. Journal of Power Sources, 2019, 428, 1-7.	7.8	19
52	In vitro cytotoxicity of silver nanoparticles in primary rat hepatic stellate cells. Molecular Medicine Reports, 2013, 8, 1365-1372.	2.4	18
53	Modulating reactivity and stability of metallic lithium <i>via</i> atomic doping. Journal of Materials Chemistry A, 2020, 8, 10363-10369.	10.3	18
54	Unusual corrosion process of gold nanoplates and the mechanism study. Nanoscale, 2010, 2, 685.	5.6	16

YINGWEN CHENG

#	Article	IF	CITATIONS
55	Modulating MnO ₂ Interface with Flexible and Self-Adhering Alkylphosphonic Layers for High-Performance Zn-MnO ₂ Batteries. ACS Applied Materials & Interfaces, 2021, 13, 23724-23731.	8.0	13
56	Energy-distinguishable bipolar UV photoelectron injection from LiCl-promoted FAPbCl3 perovskite nanorods. Journal of Materials Chemistry A, 2019, 7, 13043-13049.	10.3	10
57	Microfluidic, One-Batch Synthesis of Pd Nanocrystals on N-Doped Carbon in Surfactant-Free Deep Eutectic Solvents for Formic Acid Electrochemical Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 42704-42710.	8.0	9
58	Sodiated Na _x SnSb nanoparticles embedded in N-doped graphene sponges direct uniform Na nucleation and smooth plating for high efficiency Na metal batteries. Journal of Materials Chemistry A, 2021, 9, 6123-6130.	10.3	9
59	Synergistics of Fe ₃ C and Fe on Mesoporous Fe–N–C Sulfur Host for Nearly Complete and Fast Lithium Polysulfide Conversion. ACS Applied Materials & Interfaces, 2021, 13, 17791-17799.	8.0	9
60	Stabilization and transformation of Pt nanocrystals supported on ZnAl2O4spinel. RSC Advances, 2017, 7, 3282-3286.	3.6	7
61	A direct and facile synthetic route for micron-scale gold prisms and fabrication of gold prism thin films on solid substrates. Materials Chemistry and Physics, 2010, 119, 188-194.	4.0	6
62	One-Step Synthesis of Na–Sn Alloy with Internal 3D Na ₁₅ Sn ₄ Support for Fast and Stable Na Metal Batteries. ACS Applied Energy Materials, 2022, 5, 20-26.	5.1	6
63	Redox catalysis-promoted fast iodine kinetics for polyiodide-free Na–I ₂ electrochemistry. Journal of Materials Chemistry A, 2022, 10, 11325-11331.	10.3	6
64	Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl2O4 spinel in oxidizing atmosphere. Catalysis Communications, 2017, 93, 57-61.	3.3	5
65	Effect of Multi-Walled Carbon Nanotubes and Conducting Polymer on Capacitance of Mesoporous Carbon Electrode. Journal of Nanoscience and Nanotechnology, 2014, 14, 7015-7021.	0.9	4
66	Diameter dependent doping in horizontally aligned high-density N-doped SWNT arrays. Nano Research, 2019, 12, 1845-1850.	10.4	4
67	A Facile Route to Synthesize Gold Prisms Up to Micrometer Scale Based on Slow Reduction Methods. Journal of Dispersion Science and Technology, 2011, 32, 277-282.	2.4	1