
## Venigallabasaveswara Rao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2767151/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Bacteriophage DNA Packaging Motor. Annual Review of Genetics, 2008, 42, 647-681.                                                                                                                                        | 7.6  | 338       |
| 2  | Molecular architecture of the prolate head of bacteriophage T4. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6003-6008.                                                      | 7.1  | 271       |
| 3  | The Structure of the Phage T4 DNA Packaging Motor Suggests a Mechanism Dependent on Electrostatic Forces. Cell, 2008, 135, 1251-1262.                                                                                       | 28.9 | 226       |
| 4  | Single phage T4 DNA packaging motors exhibit large force generation, high velocity, and dynamic<br>variability. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104,<br>16868-16873. | 7.1  | 175       |
| 5  | Mechanisms of DNA Packaging by Large Double-Stranded DNA Viruses. Annual Review of Virology, 2015, 2, 351-378.                                                                                                              | 6.7  | 132       |
| 6  | Genome packaging in viruses. Current Opinion in Structural Biology, 2010, 20, 114-120.                                                                                                                                      | 5.7  | 124       |
| 7  | Cloning, overexpression and purification of the terminase proteins gp16 and gp17 of bacteriophage T4.<br>Journal of Molecular Biology, 1988, 200, 475-488.                                                                  | 4.2  | 120       |
| 8  | The Structure of the ATPase that Powers DNA Packaging into Bacteriophage T4 Procapsids. Molecular Cell, 2007, 25, 943-949.                                                                                                  | 9.7  | 116       |
| 9  | Sequence analysis of bacteriophage T4 DNA packaging/terminase genes 16 and 17 reveals a common ATPase center in the large subunit of viral terminases. Nucleic Acids Research, 2002, 30, 4009-4021.                         | 14.5 | 115       |
| 10 | The Bacteriophage DNA Packaging Machine. Advances in Experimental Medicine and Biology, 2012, 726,<br>489-509.                                                                                                              | 1.6  | 111       |
| 11 | Genetic Engineering of Bacteriophages Against Infectious Diseases. Frontiers in Microbiology, 2019, 10,<br>954.                                                                                                             | 3.5  | 101       |
| 12 | Engineering of Bacteriophage T4 Genome Using CRISPR-Cas9. ACS Synthetic Biology, 2017, 6, 1952-1961.                                                                                                                        | 3.8  | 96        |
| 13 | In vitro and in vivo delivery of genes and proteins using the bacteriophage T4 DNA packaging machine.<br>Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5846-5851.             | 7.1  | 92        |
| 14 | Biochemical Characterization of an ATPase Activity Associated with the Large Packaging Subunit gp17 from Bacteriophage T4. Journal of Biological Chemistry, 2000, 275, 37127-37136.                                         | 3.4  | 91        |
| 15 | Structure and assembly of bacteriophage T4 head. Virology Journal, 2010, 7, 356.                                                                                                                                            | 3.4  | 91        |
| 16 | Cryo-EM structure of the bacteriophage T4 portal protein assembly at near-atomic resolution. Nature<br>Communications, 2015, 6, 7548.                                                                                       | 12.8 | 88        |
| 17 | Structure and function of the small terminase component of the DNA packaging machine in T4-like<br>bacteriophages. Proceedings of the National Academy of Sciences of the United States of America,<br>2012, 109, 817-822.  | 7.1  | 87        |
| 18 | Bacteriophage T4 nanoparticles for vaccine delivery against infectious diseases. Advanced Drug<br>Delivery Reviews, 2019, 145, 57-72.                                                                                       | 13.7 | 83        |

| #  | Article                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Structure of the Small Outer Capsid Protein, Soc: A Clamp for Stabilizing Capsids of T4-like Phages.<br>Journal of Molecular Biology, 2010, 395, 728-741.                                                                                                                                 | 4.2 | 81        |
| 20 | The Functional Domains of Bacteriophage T4 Terminase. Journal of Biological Chemistry, 2004, 279, 40795-40801.                                                                                                                                                                            | 3.4 | 78        |
| 21 | Assembly of Human Immunodeficiency Virus (HIV) Antigens on Bacteriophage T4: a Novel In Vitro<br>Approach To Construct Multicomponent HIV Vaccines. Journal of Virology, 2006, 80, 7688-7698.                                                                                             | 3.4 | 78        |
| 22 | Molecular Architecture of Bacteriophage T4 Capsid: Vertex Structure and Bimodal Binding of the Stabilizing Accessory Protein, Soc. Virology, 2000, 271, 321-333.                                                                                                                          | 2.4 | 71        |
| 23 | The N-terminal ATPase site in the large terminase protein gp17 is critically required for DNA packaging in bacteriophage T4 1 1Edited by M. Gottesman. Journal of Molecular Biology, 2001, 314, 401-411.                                                                                  | 4.2 | 69        |
| 24 | Multicomponent anthrax toxin display and delivery using bacteriophage T4. Vaccine, 2007, 25, 1225-1235.                                                                                                                                                                                   | 3.8 | 68        |
| 25 | The Molecular Architecture of the Bacteriophage T4 Neck. Journal of Molecular Biology, 2013, 425, 1731-1744.                                                                                                                                                                              | 4.2 | 66        |
| 26 | DNA packaging of bacteriophage T4 proheads in vitro evidence that prohead expansion is not coupled to DNA packaging. Journal of Molecular Biology, 1985, 185, 565-578.                                                                                                                    | 4.2 | 65        |
| 27 | Structure, Assembly, and DNA Packaging of the Bacteriophage T4 Head. Advances in Virus Research, 2012, 82, 119-153.                                                                                                                                                                       | 2.1 | 65        |
| 28 | The DNA Translocating ATPase of Bacteriophage T4 Packaging Motor. Journal of Molecular Biology, 2006, 363, 786-799.                                                                                                                                                                       | 4.2 | 64        |
| 29 | Structure of the Three N-Terminal Immunoglobulin Domains of the Highly Immunogenic Outer Capsid<br>Protein from a T4-Like Bacteriophage. Journal of Virology, 2011, 85, 8141-8148.                                                                                                        | 3.4 | 64        |
| 30 | Cryo-EM structure of the bacteriophage T4 isometric head at 3.3-Ã resolution and its relevance to the assembly of icosahedral viruses. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8184-E8193.                                           | 7.1 | 63        |
| 31 | A Bacteriophage T4 Nanoparticle-Based Dual Vaccine against Anthrax and Plague. MBio, 2018, 9, .                                                                                                                                                                                           | 4.1 | 62        |
| 32 | A rapid and sensitive PCR strategy employed for amplification and sequencing of porA from a single colony-forming unit of Neisseria meningitidis. Gene, 1993, 137, 153-162.                                                                                                               | 2.2 | 61        |
| 33 | In vitro binding of anthrax protective antigen on bacteriophage T4 capsid surface through<br>Hoc–capsid interactions: A strategy for efficient display of large full-length proteins. Virology, 2006,<br>345, 190-198.                                                                    | 2.4 | 60        |
| 34 | Analysis of capsid portal protein and terminase functional domains: interaction sites required for<br>DNA packaging in bacteriophage T4. Journal of Molecular Biology, 1999, 289, 249-260.                                                                                                | 4.2 | 59        |
| 35 | Correlation between Lethal Toxin-Neutralizing Antibody Titers and Protection from Intranasal<br>Challenge with Bacillus anthracis Ames Strain Spores in Mice after Transcutaneous Immunization<br>with Recombinant Anthrax Protective Antigen. Infection and Immunity, 2006, 74, 794-797. | 2.2 | 56        |
| 36 | Mutated and Bacteriophage T4 Nanoparticle Arrayed F1-V Immunogens from Yersinia pestis as Next<br>Generation Plague Vaccines. PLoS Pathogens, 2013, 9, e1003495.                                                                                                                          | 4.7 | 56        |

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Functional analysis of the highly antigenic outer capsid protein, Hoc, a virus decoration protein from<br>T4″ike bacteriophages. Molecular Microbiology, 2010, 77, 444-455.                                                                    | 2.5  | 54        |
| 38 | A Promiscuous DNA Packaging Machine from Bacteriophage T4. PLoS Biology, 2011, 9, e1000592.                                                                                                                                                    | 5.6  | 53        |
| 39 | Direct Sequencing of Polymerase Chain Reaction-Amplified DNA. Analytical Biochemistry, 1994, 216, 1-14.                                                                                                                                        | 2.4  | 52        |
| 40 | Assembly of the Small Outer Capsid Protein, Soc, on Bacteriophage T4: A Novel System for High Density<br>Display of Multiple Large Anthrax Toxins and Foreign Proteins on Phage Capsid. Journal of Molecular<br>Biology, 2007, 370, 1006-1019. | 4.2  | 52        |
| 41 | An ATP Hydrolysis Sensor in the DNA Packaging Motor from Bacteriophage T4 Suggests an<br>Inchworm-Type Translocation Mechanism. Journal of Molecular Biology, 2007, 369, 79-94.                                                                | 4.2  | 48        |
| 42 | Unexpected evolutionary benefit to phages imparted by bacterial CRISPR-Cas9. Science Advances, 2018,<br>4, eaar4134.                                                                                                                           | 10.3 | 47        |
| 43 | The Small Terminase, gp16, of Bacteriophage T4 Is a Regulator of the DNA Packaging Motor. Journal of<br>Biological Chemistry, 2009, 284, 24490-24500.                                                                                          | 3.4  | 46        |
| 44 | Functional analysis of the DNA-packaging/terminase protein gp17 from bacteriophage T4 1 1Edited by M.<br>Gottesman. Journal of Molecular Biology, 1998, 281, 803-814.                                                                          | 4.2  | 44        |
| 45 | Bacteriophage T4 Capsid: A Unique Platform for Efficient Surface Assembly of Macromolecular<br>Complexes. Journal of Molecular Biology, 2006, 363, 577-588.                                                                                    | 4.2  | 44        |
| 46 | A universal bacteriophage T4 nanoparticle platform to design multiplex SARS-CoV-2 vaccine candidates by CRISPR engineering. Science Advances, 2021, 7, eabh1547.                                                                               | 10.3 | 44        |
| 47 | The headful packaging nuclease of bacteriophage T4. Molecular Microbiology, 2008, 69, 1180-1190.                                                                                                                                               | 2.5  | 43        |
| 48 | Anthrax Vaccine Antigen-Adjuvant Formulations Completely Protect New Zealand White Rabbits<br>against Challenge with Bacillus anthracis Ames Strain Spores. Vaccine Journal, 2012, 19, 11-16.                                                  | 3.1  | 43        |
| 49 | A Discontinuous Headful Packaging Model for Packaging Less Than Headful Length DNA Molecules by<br>Bacteriophage T4. Journal of Molecular Biology, 1996, 258, 839-850.                                                                         | 4.2  | 38        |
| 50 | Molecular anatomy of the receptor binding module of a bacteriophage long tail fiber. PLoS Pathogens, 2019, 15, e1008193.                                                                                                                       | 4.7  | 38        |
| 51 | Novel and deviant Walker A ATP-binding motifs in bacteriophage large terminase–DNA packaging proteins. Virology, 2004, 321, 217-221.                                                                                                           | 2.4  | 37        |
| 52 | Structural analysis of DNA cleaved in vivo by bacteriophage T4 terminase. Gene, 1994, 146, 67-72.                                                                                                                                              | 2.2  | 36        |
| 53 | Defining the Bacteriophage T4 DNA Packaging Machine: Evidence for a C-terminal DNA Cleavage Domain<br>in the Large Terminase/Packaging Protein gp17. Journal of Molecular Biology, 2003, 334, 37-52.                                           | 4.2  | 36        |
| 54 | Defining the ATPase Center of Bacteriophage T4 DNA Packaging Machine: Requirement for a Catalytic<br>Glutamate Residue in the Large Terminase Protein gp17. Journal of Molecular Biology, 2003, 331, 139-154.                                  | 4.2  | 35        |

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Highly effective generic adjuvant systems for orphan or poverty-related vaccines. Vaccine, 2011, 29,<br>873-877.                                                                                                                        | 3.8  | 35        |
| 56 | The dynamic pause-unpackaging state, an off-translocation recovery state of a DNA packaging motor<br>from bacteriophage T4. Proceedings of the National Academy of Sciences of the United States of<br>America, 2012, 109, 20000-20005. | 7.1  | 34        |
| 57 | Functional Analysis of the Bacteriophage T4 DNA-packaging ATPase Motor. Journal of Biological<br>Chemistry, 2006, 281, 518-527.                                                                                                         | 3.4  | 33        |
| 58 | Covalent Modifications of the Bacteriophage Genome Confer a Degree of Resistance to Bacterial<br>CRISPR Systems. Journal of Virology, 2020, 94, .                                                                                       | 3.4  | 32        |
| 59 | Dynamic Shifts in the HIV Proviral Landscape During Long Term Combination Antiretroviral Therapy:<br>Implications for Persistence and Control of HIV Infections. Viruses, 2020, 12, 136.                                                | 3.3  | 32        |
| 60 | A rapid polymerase-chain-reaction-directed sequencing strategy using a thermostable DNA polymerase from Thermus flavus. Gene, 1992, 113, 17-23.                                                                                         | 2.2  | 31        |
| 61 | Mutations Altering a Structurally Conserved Loop-Helix-Loop Region of a Viral Packaging Motor<br>Change DNA Translocation Velocity and Processivity. Journal of Biological Chemistry, 2010, 285,<br>24282-24289.                        | 3.4  | 29        |
| 62 | Regulation by interdomain communication of a headful packaging nuclease from bacteriophage T4.<br>Nucleic Acids Research, 2011, 39, 2742-2755.                                                                                          | 14.5 | 29        |
| 63 | Specificity of Interactions among the DNA-packaging Machine Components of T4-related Bacteriophages. Journal of Biological Chemistry, 2011, 286, 3944-3956.                                                                             | 3.4  | 28        |
| 64 | A prokaryotic-eukaryotic hybrid viral vector for delivery of large cargos of genes and proteins into human cells. Science Advances, 2019, 5, eaax0064.                                                                                  | 10.3 | 28        |
| 65 | Membrane-associated assembly of a phage T4 DNA entrance vertex structure studied with expression vectors. Journal of Molecular Biology, 1989, 209, 667-681.                                                                             | 4.2  | 27        |
| 66 | Portal-Large Terminase Interactions of the Bacteriophage T4 DNA Packaging Machine Implicate a<br>Molecular Lever Mechanism for Coupling ATPase to DNA Translocation. Journal of Virology, 2012, 86,<br>4046-4057.                       | 3.4  | 27        |
| 67 | Structural morphing in a symmetry-mismatched viral vertex. Nature Communications, 2020, 11, 1713.                                                                                                                                       | 12.8 | 27        |
| 68 | Evidence that a phage T4 DNA packaging enzyme is a processed form of the major capsid gene product.<br>Cell, 1985, 42, 967-977.                                                                                                         | 28.9 | 26        |
| 69 | Evidence for an electrostatic mechanism of force generation by the bacteriophage T4 DNA packaging motor. Nature Communications, 2014, 5, 4173.                                                                                          | 12.8 | 26        |
| 70 | Structure–Function Analysis of the DNA Translocating Portal of the Bacteriophage T4 Packaging<br>Machine. Journal of Molecular Biology, 2014, 426, 1019-1038.                                                                           | 4.2  | 26        |
| 71 | A Bivalent Anthrax–Plague Vaccine That Can Protect against Two Tier-1 Bioterror Pathogens, Bacillus<br>anthracis and Yersinia pestis. Frontiers in Immunology, 2017, 8, 687.                                                            | 4.8  | 26        |
| 72 | The ATPase Domain of the Large Terminase Protein, gp17, from Bacteriophage T4 Binds DNA: Implications<br>to the DNA Packaging Mechanism. Journal of Molecular Biology, 2008, 376, 1272-1281.                                            | 4.2  | 25        |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | HIV-1 Variable Loop 2 and its Importance in HIV-1 Infection and Vaccine Development. Current HIV Research, 2013, 11, 427-438.                                                                                            | 0.5  | 25        |
| 74 | A phage T4 in vitro packaging system for cloning long DNA molecules. Gene, 1992, 113, 25-33.                                                                                                                             | 2.2  | 24        |
| 75 | A Critical Coiled Coil Motif in the Small Terminase, gp16, from Bacteriophage T4: Insights into DNA<br>Packaging Initiation and Assembly of Packaging Motor. Journal of Molecular Biology, 2006, 358, 67-82.             | 4.2  | 24        |
| 76 | Highly Effective Soluble and Bacteriophage T4 Nanoparticle Plague Vaccines Against Yersinia pestis.<br>Methods in Molecular Biology, 2016, 1403, 499-518.                                                                | 0.9  | 24        |
| 77 | Nucleotide-dependent DNA gripping and an end-clamp mechanism regulate the bacteriophage T4 viral packaging motor. Nature Communications, 2018, 9, 5434.                                                                  | 12.8 | 24        |
| 78 | Single-molecule packaging initiation in real time by a viral DNA packaging machine from bacteriophage<br>T4. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111,<br>15096-15101. | 7.1  | 22        |
| 79 | A New Approach to Produce HIV-1 Envelope Trimers. Journal of Biological Chemistry, 2015, 290, 19780-19795.                                                                                                               | 3.4  | 22        |
| 80 | Bacteriophage T4 Escapes CRISPR Attack by Minihomology Recombination and Repair. MBio, 2021, 12, e0136121.                                                                                                               | 4.1  | 22        |
| 81 | Bacteriophage T4 as a Nanoparticle Platform to Display and Deliver Pathogen Antigens: Construction of an Effective Anthrax Vaccine. Methods in Molecular Biology, 2017, 1581, 255-267.                                   | 0.9  | 20        |
| 82 | Designing a Soluble Near Full-length HIV-1 gp41 Trimer. Journal of Biological Chemistry, 2013, 288, 234-246.                                                                                                             | 3.4  | 19        |
| 83 | Effect of cytokines on Siglec-1 and HIV-1 entry in monocyte–derived macrophages: the importance of<br>HIV-1 envelope V1V2 region. Journal of Leukocyte Biology, 2016, 99, 1089-1106.                                     | 3.3  | 19        |
| 84 | DNA Packaging in Bacteriophage T4. , 2005, , 40-58.                                                                                                                                                                      |      | 18        |
| 85 | Glycosylation and oligomeric state of envelope protein might influence HIV-1 virion capture by α4β7<br>integrin. Virology, 2017, 508, 199-212.                                                                           | 2.4  | 18        |
| 86 | Cryo-electron microscopy study of bacteriophage T4 displaying anthrax toxin proteins. Virology, 2007,<br>367, 422-427.                                                                                                   | 2.4  | 17        |
| 87 | A sequestered fusion peptide in the structure of an HIV-1 transmitted founder envelope trimer. Nature Communications, 2019, 10, 873.                                                                                     | 12.8 | 17        |
| 88 | Novel Mutants in the 5′ Upstream Region of the Portal Protein Gene20Overcome a gp40-dependent<br>Prohead Assembly Block in Bacteriophage T4. Journal of Molecular Biology, 1996, 263, 539-550.                           | 4.2  | 16        |
| 89 | Engineering T4 Bacteriophage for <i>In Vivo</i> Display by Type V CRISPR-Cas Genome Editing. ACS<br>Synthetic Biology, 2021, 10, 2639-2648.                                                                              | 3.8  | 15        |
| 90 | Anthrax LFn-PA Hybrid Antigens: Biochemistry, Immunogenicity, and Protection Against Lethal Ames<br>Spore Challenge in Rabbits. The Open Vaccine Journal, 2009, 2, 92-99.                                                | 0.6  | 15        |

| #   | Article                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Bacteriophage T4 Vaccine Platform for Next-Generation Influenza Vaccine Development. Frontiers in<br>Immunology, 2021, 12, 745625.                                                        | 4.8  | 15        |
| 92  | The remarkable viral portal vertex: structure and a plausible model for mechanism. Current Opinion in Virology, 2021, 51, 65-73.                                                          | 5.4  | 13        |
| 93  | Exclusion of small terminase mediated DNA threading models for genome packaging in bacteriophage<br>T4. Nucleic Acids Research, 2016, 44, 4425-4439.                                      | 14.5 | 11        |
| 94  | A viral genome packaging ring-ATPase is a flexibly coordinated pentamer. Nature Communications, 2021, 12, 6548.                                                                           | 12.8 | 10        |
| 95  | Altering the speed of a DNA packaging motor from bacteriophage T4. Nucleic Acids Research, 2017, 45, 11437-11448.                                                                         | 14.5 | 9         |
| 96  | Viruses: Sophisticated Biological Machines. Advances in Experimental Medicine and Biology, 2012, 726, 1-3.                                                                                | 1.6  | 8         |
| 97  | Adenine Recognition Is a Key Checkpoint in the Energy Release Mechanism of Phage T4 DNA Packaging<br>Motor. Journal of Molecular Biology, 2012, 415, 329-342.                             | 4.2  | 7         |
| 98  | Quantitative analyses reveal distinct sensitivities of the capture of HIV-1 primary viruses and pseudoviruses to broadly neutralizing antibodies. Virology, 2017, 508, 188-198.           | 2.4  | 7         |
| 99  | Preparation of a Bacteriophage T4-based Prokaryotic-eukaryotic Hybrid Viral Vector for Delivery of<br>Large Cargos of Genes and Proteins into Human Cells. Bio-protocol, 2020, 10, e3573. | 0.4  | 7         |
| 100 | CRISPR Engineering of Bacteriophage T4 to Design Vaccines Against SARS-CoV-2 and Emerging<br>Pathogens. Methods in Molecular Biology, 2022, 2410, 209-228.                                | 0.9  | 7         |
| 101 | Humoral Response to the HIV-1 Envelope V2 Region in a Thai Early Acute Infection Cohort. Cells, 2019, 8, 365.                                                                             | 4.1  | 6         |
| 102 | Purification and Characterization of Giant Empty Proheads from Packaging-Defective 23ptg Mutants of<br>Bacteriophage T4. Virology, 1993, 196, 896-899.                                    | 2.4  | 5         |
| 103 | A phage-encoded nucleoid associated protein compacts both host and phage DNA and derepresses H-NS silencing. Nucleic Acids Research, 2021, 49, 9229-9245.                                 | 14.5 | 5         |
| 104 | Designing a nine cysteine-less DNA packaging motor from bacteriophage T4 reveals new insights into<br>ATPase structure and function. Virology, 2014, 468-470, 660-668.                    | 2.4  | 4         |
| 105 | Selection and immune recognition of HIV-1 MPER mimotopes. Virology, 2020, 550, 99-108.                                                                                                    | 2.4  | 4         |
| 106 | A virus DNA gate: Zipping and unzipping the packed viral genome. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8403-8404.                   | 7.1  | 3         |
| 107 | Function of a viral genome packaging motor from bacteriophage T4 is insensitive to DNA sequence.<br>Nucleic Acids Research, 2020, 48, 11602-11614.                                        | 14.5 | 3         |
| 108 | Mechanism of Coordination of the Bacteriophage T4 DNA Packaging Motor Analyzed by Real-Time<br>Single Molecule Fluorescence Assay. Biophysical Journal, 2016, 110, 46a.                   | 0.5  | 1         |

| #   | Article                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Studies of viral DNA packaging motors with optical tweezers: a comparison of motor function in bacteriophages l̈†29, l̂», and T4. Proceedings of SPIE, 2007, , .                | 0.8 | О         |
| 110 | Liposomes containing glucosyl ceramide specifically bind T4 bacteriophage: a self-assembling nanocarrier formulation. Journal of Liposome Research, 2011, 21, 279-285.          | 3.3 | 0         |
| 111 | Testing a structural model for viral DNA packaging motor function by optical tweezers measurements, site directed mutagenesis, and molecular dynamics calculations. , 2013, , . |     | Ο         |
| 112 | Characterization of the Binding Affinity of Siglec-1 to gp120, gp145, and V2 Loop via Sialic Acid Binding<br>Motif. AIDS Research and Human Retroviruses, 2014, 30, A119-A120.  | 1.1 | 0         |
| 113 | Primary HIV-1 and Infectious Molecular Clones Are Differentially Susceptible to Broadly Neutralizing Antibodies. Vaccines, 2020, 8, 782.                                        | 4.4 | 0         |
| 114 | Bacteriophage Vaccines. , 2021, , 259-264.                                                                                                                                      |     | 0         |