Naia Morueta-Holme

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2766559/publications.pdf

Version: 2024-02-01

41 papers 3,360 citations

236925 25 h-index 265206 42 g-index

43 all docs 43
docs citations

43 times ranked

6508 citing authors

#	Article	IF	CITATIONS
1	Humboldt's enigma: What causes global patterns of mountain biodiversity?. Science, 2019, 365, 1108-1113.	12.6	505
2	Functional trait space and the latitudinal diversity gradient. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111 , $13745-13750$.	7.1	319
3	The <scp>bien r</scp> package: A tool to access the Botanical Information and Ecology Network (BIEN) database. Methods in Ecology and Evolution, 2018, 9, 373-379.	5.2	241
4	Strong upslope shifts in Chimborazo's vegetation over two centuries since Humboldt. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12741-12745.	7.1	227
5	The commonness of rarity: Global and future distribution of rarity across land plants. Science Advances, 2019, 5, eaaz0414.	10.3	194
6	Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nature Ecology and Evolution, 2021, 5, 1499-1509.	7.8	147
7	Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data. Ecological Modelling, 2015, 312, 308-317.	2.5	131
8	Habitat area and climate stability determine geographical variation in plant species range sizes. Ecology Letters, 2013, 16, 1446-1454.	6.4	130
9	Climate Change Risks and Conservation Implications for a Threatened Small-Range Mammal Species. PLoS ONE, 2010, 5, e10360.	2.5	121
10	Spatial phylogenetics of the native California flora. BMC Biology, 2017, 15, 96.	3.8	104
11	Determinants of geographic range size in plants. New Phytologist, 2020, 226, 650-665.	7.3	104
12	A network approach for inferring species associations from coâ€occurrence data. Ecography, 2016, 39, 1139-1150.	4. 5	96
13	30% land conservation and climate action reduces tropical extinction risk by more than 50%. Ecography, 2020, 43, 943-953.	4.5	94
14	Spatial patterns and climate relationships of major plant traits in the New World differ between woody and herbaceous species. Journal of Biogeography, 2018, 45, 895-916.	3.0	92
15	Limited sampling hampers "big data―estimation of species richness in a tropical biodiversity hotspot. Ecology and Evolution, 2015, 5, 807-820.	1.9	91
16	Shifts in trait means and variances in North American tree assemblages: species richness patterns are loosely related to the functional space. Ecography, 2015, 38, 649-658.	4.5	89
17	Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests. Ecography, 2016, 39, 194-203.	4.5	86
18	Linking environmental filtering and disequilibrium to biogeography with a community climate framework. Ecology, 2015, 96, 972-985.	3.2	70

#	Article	IF	CITATIONS
19	Patterns and drivers of plant functional group dominance across the Western Hemisphere: a macroecological re-assessment based on a massive botanical dataset. Botanical Journal of the Linnean Society, 2016, 180, 141-160.	1.6	59
20	Landâ€use change and biodiversity: Challenges for assembling evidence on the greatest threat to nature. Global Change Biology, 2021, 27, 5414-5429.	9.5	55
21	Temperature shapes opposing latitudinal gradients of plant taxonomic and phylogenetic \hat{l}^2 diversity. Ecology Letters, 2019, 22, 1126-1135.	6.4	54
22	Species richness and endemism in the native flora of California. American Journal of Botany, 2017, 104, 487-501.	1.7	50
23	Late Quaternary climate legacies in contemporary plant functional composition. Global Change Biology, 2018, 24, 4827-4840.	9.5	48
24	A plant growth form dataset for the New World. Ecology, 2016, 97, 3243-3243.	3.2	44
25	A review of the heterogeneous landscape of biodiversity databases: Opportunities and challenges for a synthesized biodiversity knowledge base. Global Ecology and Biogeography, 2022, 31, 1242-1260.	5.8	29
26	The role of land use and land cover change in climate change vulnerability assessments of biodiversity: a systematic review. Landscape Ecology, 2021, 36, 3367-3382.	4.2	28
27	Future vulnerability mapping based on response to extreme climate events: Dieback thresholds in an endemic California oak. Diversity and Distributions, 2018, 24, 1186-1198.	4.1	19
28	<i>Plantâ€Oâ€Matic</i> : a dynamic and mobile guide to all plants of the Americas. Methods in Ecology and Evolution, 2016, 7, 960-965.	5.2	18
29	The relationship of woody plant size and leaf nutrient content to largeâ€scale productivity for forests across the Americas. Journal of Ecology, 2019, 107, 2278-2290.	4.0	18
30	The adaptive challenge of extreme conditions shapes evolutionary diversity of plant assemblages at continental scales. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
31	Conservation strategies for the climate crisis: An update on three decades of biodiversity management recommendations from science. Biological Conservation, 2022, 268, 109497.	4.1	12
32	Best practices for reporting climate data in ecology. Nature Climate Change, 2018, 8, 92-94.	18.8	10
33	Geography of Plants in the New World: Humboldt's Relevance in the Age of Big Data. Annals of the Missouri Botanical Garden, 2018, 103, 315-329.	1.3	8
34	Potential 21st century changes to the mammal fauna of Denmark – implications of climate change, land-use, and invasive species. IOP Conference Series: Earth and Environmental Science, 2009, 8, 012016.	0.3	7
35	Leaf-cutting ants as road engineers: the width of trails at branching points in Atta cephalotes. Insectes Sociaux, 2012, 59, 389-394.	1.2	7
36	Big moving day for biodiversity? A macroecological assessment of the scope for assisted colonization as a conservation strategy under global warming. IOP Conference Series: Earth and Environmental Science, 2009, 8, 012017.	0.3	5

#	Article	IF	CITATIONS
37	Editorial: Ecological Non-equilibrium in the Anthropocene. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	4
38	Resurvey of Antisana supports overall conclusions of Chimborazo study. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21346-21347.	7.1	3
39	Macroecology of vegetation—ÂLessons learnt from the Virtual Special Issue. Journal of Vegetation Science, 2022, 33, .	2.2	3
40	Reply to Sklenář: Upward vegetation shifts on Chimborazo are robust. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E409-E410.	7.1	2
41	Reply to Feeley and Rehm: Land-use intensification increases risk of species losses from climate change. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6085-E6085.	7.1	1