Zdenek Samec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2766506/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemistry at the interface between two immiscible electrolyte solutions (IUPAC Technical) Tj ETQq1 1 0.78	4314 rgB1 0.9	ſ ¦Oyerlock
2	Charge transfer between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 100, 841-852.	0.3	203
3	Galvani potential scales for water—nitrobenzene and water-1,2-dichloroethane interfaces. Electrochimica Acta, 1990, 35, 1173-1175.	2.6	177
4	Investigation of ion transfer across the interface between two immiscible electrolyte solutions by cyclic voltammetry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 83, 393-397.	0.3	164
5	Standard Gibbs energies of transfer of univalent ions from water to 1,2-dichloroethane. Electrochimica Acta, 1992, 37, 231-235.	2.6	158
6	Electrical double layer at the interface between two immiscible electrolyte solutions. Chemical Reviews, 1988, 88, 617-632.	23.0	153
7	Molecular Electrocatalysis for Oxygen Reduction by Cobalt Porphyrins Adsorbed at Liquid/Liquid Interfaces. Journal of the American Chemical Society, 2010, 132, 2655-2662.	6.6	141
8	Faradaic ion transfer across the interface of two immiscible electrolyte solutions: chronopotentiometry and cyclic voltammetry. Analytical Chemistry, 1980, 52, 1606-1610.	3.2	136
9	Reversible Voltage-Induced Assembly of Au Nanoparticles at Liquid Liquid Interfaces. Journal of the American Chemical Society, 2004, 126, 915-919.	6.6	127
10	NAD/NADH as a model redox system: Mechanism, mediation, modification by the environment. Bioelectrochemistry, 1982, 9, 365-378.	1.0	122
11	Proton-Coupled Oxygen Reduction at Liquidâ`'Liquid Interfaces Catalyzed by Cobalt Porphine. Journal of the American Chemical Society, 2009, 131, 13453-13459.	6.6	109
12	Charge transfer between two immiscible electrolyte solutions part VIII. Transfer of alkali and alkaline earth-metal cations across the water/nitrobenzene interface facilitated by synthetic neutral ion carriers. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982, 135, 265-283.	0.3	105
13	Charge transfer between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 99, 197-205.	0.3	99
14	Charge transfer between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981, 126, 105-119.	0.3	98
15	Ion amperometry at the interface between two immiscible electrolyte solutions in view of realizing the amperometric ion-selective electrode. Talanta, 2004, 63, 21-32.	2.9	96
16	Double layers at liquid/liquid interfaces. Faraday Discussions of the Chemical Society, 1984, 77, 197-208.	2.2	95
17	Anodic oxidation of dihydronicotinamide adenine dinucleotide at solid electrodes; Mediation by surface species. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 144, 217-234.	0.3	91
18	The partition of amines between water and an organic solvent phase. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 163, 159-170.	0.3	89

#	Article	lF	CITATIONS
19	Charge transfer between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 103, 11-18.	0.3	88
20	Charge transfer between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 99, 385-389.	0.3	85
21	Electrolyte dropping electrode polarographic studies. Solvent effect on stability of crown ether complexes of alkali-metal cations. Analytical Chemistry, 1990, 62, 1010-1015.	3.2	84
22	H ₂ O ₂ Generation by Decamethylferrocene at a Liquid Liquid Interface. Angewandte Chemie - International Edition, 2008, 47, 4675-4678.	7.2	84
23	Kinetics of Water Sorption in NafionThin Films â^' Quartz Crystal Microbalance Study. Journal of Physical Chemistry B, 2001, 105, 7979-7983.	1.2	83
24	Oxygen Reduction Catalyzed by a Fluorinated Tetraphenylporphyrin Free Base at Liquid/Liquid Interfaces. Journal of the American Chemical Society, 2010, 132, 13733-13741.	6.6	80
25	Detection of an electron transfer across the interface between two immiscible electrolyte solutions by cyclic voltammetry with four-electrode system. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 96, 245-247.	0.3	79
26	Ion transfer across liquid-liquid phase boundaries: electrochemical kinetics by Faradaic impedance. The Journal of Physical Chemistry, 1989, 93, 8204-8212.	2.9	78
27	The dependence of the electrochemical charge-transfer coefficient on the electrode potential. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1978, 94, 169-185.	0.3	76
28	Polarization phenomena at the water o-nitrophenyl octyl ether interface. Part 1. Evaluation of the standard Gibbs energies of ion transfer from the solubility and voltammetric measurements. Journal of Electroanalytical Chemistry, 1996, 409, 1-7.	1.9	74
29	Dynamic electrochemistry at the interface between two immiscible electrolytes. Electrochimica Acta, 2012, 84, 21-28.	2.6	74
30	Charge-transfer processes at the interface between hydrophobic ionic liquid and water. Pure and Applied Chemistry, 2009, 81, 1473-1488.	0.9	72
31	The double layer at the interface between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981, 126, 121-129.	0.3	71
32	The effect of anion adsorption on the kinetics of the Fe3+/Fe2+ reaction on Pt and Au electrodes in HclO4. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1978, 89, 271-288.	0.3	69
33	Charge transfer between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 200, 17-33.	0.3	68
34	Electrocatalysis of the oxygen reduction at a polarised interface between two immiscible electrolyte solutions by electrochemically generated Pt particles. Electrochemistry Communications, 2006, 8, 475-481.	2.3	66
35	Transfer of ferricenium cation across water/organic solvent interfaces. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 216, 303-308.	0.3	65
36	The double layer at the interface between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 187, 31-51.	0.3	64

#	Article	IF	CITATIONS
37	Proton Pump for O ₂ Reduction Catalyzed by 5,10,15,20â€Tetraphenylporphyrinatocobalt(II). Chemistry - A European Journal, 2009, 15, 2335-2340.	1.7	61
38	Electrolysis at the Interface between Two Immiscible Electrolyte Solutions: Determination of Acetylcholine by Differential Pulse Stripping Voltammetry. Analytical Letters, 1981, 14, 1241-1253.	1.0	60
39	Fast performance galvanostatic pulse technique for evaluation of the ohmic potential drop and capacitance of the interface between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 185, 263-271.	0.3	60
40	Standard Gibbs energies of transfer of alkali metal cations from water to 1,2-dichloroethane. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 257, 147-154.	0.3	60
41	Random nucleation and growth of Pt nanoparticles at the polarised interface between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry, 2007, 599, 160-166.	1.9	59
42	Oxygen and proton reduction by decamethylferrocene in non-aqueous acidic media. Chemical Communications, 2010, 46, 2918.	2.2	59
43	Substituent effects in cyclic voltammetry of titanocene dichlorides. Journal of Organometallic Chemistry, 1999, 579, 348-355.	0.8	58
44	Cyclic voltammetry of biopolymer heparin at PVC plasticized liquid membrane. Electrochemistry Communications, 2003, 5, 867-870.	2.3	58
45	Study of the oxidation of SO2 dissolved in 0·5 M H2SO4 on a gold electrode—l stationary electrode. Electrochimica Acta, 1975, 20, 403-412.	2.6	57
46	Cyclic voltammetry of ion transfer across a room temperature ionic liquid membrane supported by a microporous filter. Electrochemistry Communications, 2007, 9, 2633-2638.	2.3	56
47	Cyclic and convolution potential sweep voltammetry of reversible ion transfer across a liquid membrane. Journal of Electroanalytical Chemistry, 2000, 481, 1-6.	1.9	55
48	Diffusion Coefficients of Alkali Metal Cations in Nafion® from Ionâ€Exchange Measurements: An Advanced Kinetic Model. Journal of the Electrochemical Society, 1997, 144, 4236-4242.	1.3	54
49	Cyclic voltammetry of highly hydrophilic ions at a supported liquid membrane. Journal of Electroanalytical Chemistry, 2002, 530, 10-15.	1.9	54
50	Adsorption and Aggregation of meso-Tetrakis(4-carboxyphenyl)porphyrinato Zinc(II) at the Polarized Water 1,2-Dichloroethane Interface. Journal of Physical Chemistry B, 2003, 107, 786-790.	1.2	54
51	Charge transfer across the interface of two immiscible electrolyte solutions. Advances in Colloid and Interface Science, 1988, 29, 1-78.	7.0	50
52	Voltammetry of Ion Transfer across a Polarized Room-Temperature Ionic Liquid Membrane Facilitated by Valinomycin: Theoretical Aspects and Application. Analytical Chemistry, 2009, 81, 6382-6389.	3.2	48
53	Kinetic analysis of the picrate ion transfer across the interface between two immiscible electrolyte solutions from impedance measurements at the equilibrium potential. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 242, 291-302.	0.3	47
54	Electrochemical evidence of catalysis of oxygen reduction at the polarized liquid–liquid interface by tetraphenylporphyrin monoacid and diacid. Electrochemistry Communications, 2009, 11, 1940-1943.	2.3	43

#	Article	IF	CITATIONS
55	The double layer at the interface between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 151, 277-282.	0.3	42
56	Adsorption of phospholipids at the interface between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 242, 277-290.	0.3	42
57	Evaluation of the standard ion transfer potentials for PVC plasticized membranes from voltammetric measurements. Journal of Electroanalytical Chemistry, 2001, 496, 143-147.	1.9	42
58	Stochastic approach to the ion transfer kinetics across the interface between two immiscible electrolyte solutions comparison with the experimental data. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 204, 257-266.	0.3	41
59	lon and pore fluid transport properties of a Nafion® membrane separating two electrolyte solutions Part I. Kinetics of the proton and alkali metal cation transport. Journal of Electroanalytical Chemistry, 1995, 389, 1-11.	1.9	41
60	Charge transfer between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 103, 1-9.	0.3	40
61	Effect of temperature on the ion transfer across an interface between two immiscible electrolyte solutions: Ion transfer dynamics. Journal of Electroanalytical Chemistry, 1992, 331, 765-782.	1.9	40
62	Evaluation of Ion Transport Parameters in a Nafion Membrane from Ion-Exchange Measurements. The Journal of Physical Chemistry, 1994, 98, 6352-6358.	2.9	40
63	Counterion binding to protamine polyion at a polarised liquid–liquid interface. Journal of Electroanalytical Chemistry, 2007, 603, 235-242.	1.9	40
64	Oxygen reduction by decamethylferrocene at liquid/liquid interfaces catalyzed by dodecylaniline. Journal of Electroanalytical Chemistry, 2010, 639, 102-108.	1.9	40
65	306 - Nucleotides and related substances: Conformation in solution and at solution electrode interfaces. Bioelectrochemistry, 1980, 7, 125-152.	1.0	39
66	Transfer of Protonated Anesthetics across the Water o-Nitrophenyl Octyl Ether Interface: Effect of the Ion Structure on the Transfer Kinetics and Pharmacological Activity Analytical Sciences, 1998, 14, 35-41.	0.8	39
67	The double layer at the interface between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 225, 65-78.	0.3	38
68	The absolute electrode potential of metal electrodes emersed from liquid electrolytes. Surface Science, 1992, 264, 440-448.	0.8	38
69	Potentiometric Sensor for Heparin Polyion:Â Transient Behavior and Response Mechanism. Analytical Chemistry, 2007, 79, 2892-2900.	3.2	38
70	Evidence of tetraphenylporphyrin monoacids by ion-transfer voltammetry at polarized liquid liquid interfaces. Chemical Communications, 2008, , 5037.	2.2	38
71	Theoretical analysis of eletrochemical reactions involving two successive one-electron transfers with dimerization of intermediate-applicaiton to NAD+/NADH redox couple. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982, 133, 1-23.	0.3	37
72	Charge transfer between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 145, 213-218.	0.3	37

#	Article	IF	CITATIONS
73	The effect of the double layer on the rate of the Fe3+/Fe2+ reaction on a platinum electrode and the contemporary electron transfer theory. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 77, 163-180.	0.3	36
74	Determination of calcium, barium and strontium ions by differential pulse stripping voltammetry at a hanging electrolyte drop electrode. Analytica Chimica Acta, 1983, 151, 265-269.	2.6	35
75	Selective complexation of biogenic amines by macrocyclic polyethers at a liquid/liquid interface. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 300, 407-413.	0.3	35
76	Amperometry of Heparin Polyion Using a Rotating Disk Electrode Coated with a Plasticized PVC Membrane. Electroanalysis, 2006, 18, 115-120.	1.5	35
77	Polarization phenomena at the water o-nitrophenyl octyl ether interface Part II. Role of the solvent viscosity in the kinetics of the tetraethylammonium ion transfer. Journal of Electroanalytical Chemistry, 1997, 426, 37-45.	1.9	34
78	Origin of electrocatalysis in the reduction of peroxodisulfate on gold electrodes. Journal of Electroanalytical Chemistry, 1997, 432, 205-214.	1.9	33
79	The double layer at the interface between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 159, 233-238.	0.3	32
80	The double layer at the interface between two immiscible electrolyte solutions—IV. Solvent effect. Electrochimica Acta, 1995, 40, 2887-2895.	2.6	31
81	Amperometric Sensor for Heparin: Sensing Mechanism and Application in Human Blood Plasma Analysis. Electroanalysis, 2006, 18, 1329-1338.	1.5	31
82	Fine tuning of the catalytic effect of a metal-free porphyrin on the homogeneous oxygenreduction. Chemical Communications, 2011, 47, 5446-5448.	2.2	31
83	Study of the oxidation of SO2 dissolved in 0·5 M H2SO4 on a gold electrode—II. A rotating disc electrode. Electrochimica Acta, 1975, 20, 413-419.	2.6	30
84	Amperometric Ionâ€5elective Electrode for Alkali Metal Cations Based on a Roomâ€Temperature Ionic Liquid Membrane. Electroanalysis, 2009, 21, 1977-1983.	1.5	30
85	Polarization phenomena at the waterâ^£o-nitrophenyl octyl ether interface. Journal of Electroanalytical Chemistry, 1999, 463, 232-241.	1.9	29
86	Cyclic voltammetry of methyl- and trimethylsilyl-substituted zirconocene dichlorides. Journal of Organometallic Chemistry, 1999, 584, 323-328.	0.8	29
87	Electrolysis at the interface between two immiscible electrolyte solutions by means of a hanging electrolyte drop electrode. Analytica Chimica Acta, 1982, 141, 65-72.	2.6	27
88	Mechanism of peroxodisulfate reduction at a polycrystalline gold electrode. Journal of Electroanalytical Chemistry, 1994, 367, 141-147.	1.9	27
89	Interfacial tension and impedance measurements of interfaces between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry, 2000, 483, 47-56.	1.9	27
90	Electrochemical Oxidation of 8-Oxo-2′-Deoxyguanosine on Glassy Carbon, Gold, Platinum and Tin(IV) Oxide Electrodes. Electroanalysis, 2003, 15, 1555-1560.	1.5	27

#	Article	IF	CITATIONS
91	Ion transfer kinetics at the interface between two immiscible electrolyte solutions supported on a thick-wall micro-capillary. A mini review. Current Opinion in Electrochemistry, 2017, 1, 133-139.	2.5	27
92	Thermodynamic analysis of the cation binding to a phosphatidylcholine monolayer at a polarised interface between two immiscible electrolyte solutions. Electrochemistry Communications, 2003, 5, 98-103.	2.3	26
93	Charge transfer between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1980, 111, 211-216.	0.3	25
94	Calcium ion transfer across the water/nitrobenzene interface facilitated by a synthetic macrocyclic polyether diamide. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981, 125, 243-247.	0.3	25
95	Indicator and reference platinum solid polymer electrolyte electrodes for a simple solid-state amperometric hydrogen sensor. Journal of Electroanalytical Chemistry, 1994, 379, 301-306.	1.9	25
96	Amperometric solid-state NO2 sensor based on plasticized PVC matrix containing a hydrophobic electrolyte. Sensors and Actuators B: Chemical, 1997, 41, 1-6.	4.0	25
97	Limited agreement between the interfacial tension and differential capacity data for the polarised water 1,2-dichloroethane interface. Journal of Electroanalytical Chemistry, 2004, 565, 243-250.	1.9	25
98	Molecular electrocatalysis of the oxygen reduction at a polarised interface between two immiscible electrolyte solutions by Co(II) tetraphenylporphyrin. Electrochemistry Communications, 2007, 9, 2185-2190.	2.3	25
99	A contribution to the voltammetric study of cystine and cysteine at Pt electrodes in 0.5 M H2SO4. Journal of Electroanalytical Chemistry (1959), 1975, 65, 573-586.	0.3	24
100	311 - A new model of membrane transport: electrolysis at the interface of two immiscible electrolyte solutions. Bioelectrochemistry, 1980, 7, 61-68.	1.0	23
101	Dioxygen Reduction by Cobalt(II) Octaethylporphyrin at Liquid Liquid Interfaces. ChemPhysChem, 2010, 11, 2979-2984.	1.0	23
102	Adsorption of phospholipids at the interface between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 227, 281-285.	0.3	22
103	Solid-state hydrogen sensor based on a solid-polymer electrolyte. Electroanalysis, 1995, 7, 1054-1058.	1.5	22
104	Ultraslow Kinetics of the Ferric/Ferrous Electron Transfer Reaction on Au(110) Electrode in Perchloric Acid Solutions. Journal of the Electrochemical Society, 1999, 146, 3349-3356.	1.3	22
105	Origin of Difference between One-Electron Redox Potentials of Guanosine and Guanine:Â Electrochemical and Quantum Chemical Study. Journal of Physical Chemistry B, 2004, 108, 15896-15899.	1.2	22
106	Thermodynamic driving force effects in the oxygen reduction catalyzed by a metal-free porphyrin. Electrochimica Acta, 2012, 82, 457-462.	2.6	22
107	524—NAD/NADH as a model redox system: Mechanism, mediation, modification by the environment. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982, 141, 365-378.	0.3	21
108	Electrocatalytic reduction of peroxodisulfate anion on Au(111) in acidic aqueous solutions. Journal of Electroanalytical Chemistry, 1996, 409, 165-173.	1.9	21

#	Article	IF	CITATIONS
109	H[sup +] and Na[sup +] Ion Transport Properties of Sulfonated Poly(2,6-dimethyl-1,4-phenyleneoxide) Membranes. Journal of the Electrochemical Society, 2003, 150, E329.	1.3	21
110	Photochemical ion transfer across the interface between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 259, 309-313.	0.3	20
111	Origin of the effect of ion nature on the differential capacity of an interface between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry, 1998, 444, 1-5.	1.9	20
112	Extreme Basicity of Biguanide Drugs in Aqueous Solutions: Ion Transfer Voltammetry and DFT Calculations. Journal of Physical Chemistry A, 2016, 120, 7344-7350.	1.1	20
113	Charge transfer across a conducting polypyrrole membrane separated by two electrolyte solutions. Electroanalysis, 1990, 2, 623-629.	1.5	19
114	A generalised model for dynamic photocurrent responses at dye-sensitised liquid liquid interfaces. Journal of Electroanalytical Chemistry, 2005, 577, 323-337.	1.9	19
115	Open circuit potential transients associated with single emulsion droplet collisions at an interface between two immiscible electrolyte solutions. Electrochemistry Communications, 2018, 86, 113-116.	2.3	19
116	Electron transfer between ferrocene and hexacyanoferrate(III) across the water/1,2-dichloroethane interface. Collection of Czechoslovak Chemical Communications, 1988, 53, 903-911.	1.0	18
117	Photochemical transfer of tetraaryl ions across the interface between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 288, 245-261.	0.3	18
118	Electrocatalytic reduction of halothane. Journal of Electroanalytical Chemistry, 1996, 402, 107-113.	1.9	18
119	Electrochemical and density functional studies of the catalytic ethylene oxidation on nanostructured Au electrodes. Catalysis Today, 2010, 158, 29-34.	2.2	18
120	Ion transfer across polymer gel/liquid boundaries. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 284, 205-215.	0.3	17
121	Simple kinetic models of ion transfer across an interface between two immiscible electrolyte solutions Electrochimica Acta, 1998, 44, 85-90.	2.6	17
122	Dynamics of phospholipid monolayers on polarised liquid–liquid interfaces. Faraday Discussions, 2005, 129, 301-313.	1.6	17
123	Study of the emulsion droplet collisions with the polarizable water/1,2-dichloroethane interface by the open circuit potential measurements. Electrochimica Acta, 2019, 299, 875-885.	2.6	17
124	The voltammetric study of some phenanthroline-type complexes and of ferrocene with a platinum rotating disk electrode in acetonitrile. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1971, 31, 161-173.	0.3	16
125	Voltammetric determination of nitrate, perchlorate and iodide at a hanging electrolyte drop electrode. Analytica Chimica Acta, 1986, 185, 359-362.	2.6	16
126	Mechanism of the oscillatory reduction of peroxodisulfate on gold(110) at electrode potentials positive to the point of zero charge. Electrochimica Acta, 1999, 44, 3963-3967.	2.6	16

#	Article	IF	CITATIONS
127	Reduction of peroxodisulfate on gold(111) covered by surface oxides: inhibition and coupling between two oxide reduction processes. Journal of Electroanalytical Chemistry, 2001, 499, 129-135.	1.9	16
128	Quasi-elastic laser light scattering from thermally excited capillary waves on polarised liquidâ^£liquid interfaces. Journal of Electroanalytical Chemistry, 2001, 517, 77-84.	1.9	16
129	Inhibitory Effect of Water on the Oxygen Reduction Catalyzed by Cobalt(II) Tetraphenylporphyrin. Journal of Physical Chemistry A, 2014, 118, 2018-2028.	1.1	16
130	A four-electrode microcell for electrochemical measurements at the interface between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry, 1995, 386, 225-228.	1.9	15
131	Evaluation of parasitic elements contributing to experimental cell impedance: impedance measurements at interfaces between two immiscible electrolyte solutions. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3843-3849.	1.7	15
132	Specific adsorption of tetraalkylammonium cations at the waterâ^£1,2-dichloroethane interface revisited. Journal of Electroanalytical Chemistry, 2005, 585, 269-274.	1.9	15
133	Reduction of ferric ion on a rotating platinum electrode of the turbulent type in the presence and absence of adsorbed sulphur. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1972, 38, 115-126.	0.3	14
134	The influence of chemisorbed sulphur on the kinetic parameters of the reduction of Fe3+ ions on a platinum electrode on the basis of the marcus theory of electron transfer. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1973, 44, 229-238.	0.3	14
135	Voltammetry of Protonated Anesthetics at a Liquid Membrane: Evaluation of the Drug Propagation. Electroanalysis, 2000, 12, 901-904.	1.5	14
136	Quasi-elastic laser light scattering from thermally excited capillary waves on the polarised water/1,2-dichloroethane interface. Electrochemistry Communications, 2001, 3, 613-618.	2.3	14
137	Charge transfer between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 158, 25-36.	0.3	13
138	Polarization phenomena at ionic membrane/electrolyte interfaces. Journal of Electroanalytical Chemistry, 1992, 332, 349-355.	1.9	13
139	Kinetics of the ferric/ferrous electrode reaction on Nafion®-coated electrodes. Journal of Electroanalytical Chemistry, 1999, 469, 11-17.	1.9	13
140	Some aspects of impedance measurements at the interface between two immiscible electrolyte solutions in the four-electrode cell. Electrochimica Acta, 2015, 179, 3-8.	2.6	13
141	Evaluation of ohmic potential drop and capacity of interface between two immiscible electrolyte solutions by the galvanostatic pulse method. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 149, 185-192.	0.3	12
142	Double-layer effects on the Cs+ ion transfer kinetics at the water/nitrobenzene interface. Electrochimica Acta, 1995, 40, 2971-2977.	2.6	12
143	Use of the 1,1′-dimethylferrocene oxidation process for the calibration of the reference electrode potential in organic solvents immiscible with water. Journal of Electroanalytical Chemistry, 2008, 616, 57-63.	1.9	12
144	The use of the mean spherical approximation in calculation of the double-layer capacitance for the interface between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 170, 383-386.	0.3	11

#	Article	IF	CITATIONS
145	Mechanism of the Facilitated Ion Transfer Across a Liquid/Liquid Interface. Collection of Czechoslovak Chemical Communications, 1994, 59, 1287-1295.	1.0	11
146	Charge transfer resistance and differential capacity of the plasticized PVC membrane water interface. Journal of Electroanalytical Chemistry, 2002, 521, 81-86.	1.9	11
147	Mechanistic model of the oxygen reduction catalyzed by a metal-free porphyrin in one- and two-phase liquid systems. Electrochimica Acta, 2013, 110, 816-821.	2.6	11
148	Peculiar correlation between the interfacial capacity and faradaic admittance of the ion transfer across an interface between two immiscible electrolyte solutions. Electrochimica Acta, 1999, 45, 583-590.	2.6	10
149	Nickel nanoparticle assembly on single-crystal support: formation, composition and stability. Nanotechnology, 2006, 17, 1492-1500.	1.3	10
150	Visualization of the interfacial turbulence associated with remarkable faradaic current amplification at a polarized water/1,2-dichloroethane interface. Electrochemistry Communications, 2017, 80, 1-4.	2.3	10
151	Electron transfer across the polarized interface between water and a hydrophobic redox-active ionic liquid. Electrochemistry Communications, 2010, 12, 1333-1335.	2.3	9
152	Lipophilicity of acetylcholine and related ions examined by ion transfer voltammetry at a polarized room-temperature ionic liquid membrane. Journal of Electroanalytical Chemistry, 2018, 815, 183-188.	1.9	9
153	Role of water in the mechanism of the salt extraction to the organic solvent. Electrochimica Acta, 2019, 306, 541-548.	2.6	9
154	Origin of chronoamperometric responses associated with impacts of single electrolyte droplets at a polarized liquid/liquid interface. Electrochimica Acta, 2020, 354, 136653.	2.6	9
155	Kelvin probe measurements for chemical analysis: interfacial structure of electrodes exposed to the gas phase containing water vapour. Sensors and Actuators B: Chemical, 1993, 14, 741-742.	4.0	8
156	Thermodynamic aspects of the electron transfer across the interface between water and a hydrophobic redox-active ionic liquid. Electrochimica Acta, 2011, 58, 606-613.	2.6	8
157	Competitive inhibition of a metal-free porphyrin oxygen-reduction catalyst by water. Chemical Communications, 2012, 48, 4094.	2.2	8
158	Origin of the correlation between the standard Gibbs energies of ion transfer from water to a hydrophobic ionic liquid and to a molecular solvent. Electrochimica Acta, 2013, 87, 591-598.	2.6	8
159	Temperature effect in the ion transfer kinetics at the micro-interface between two immiscible electrolyte solutions. Electrochimica Acta, 2015, 180, 366-372.	2.6	8
160	Transfer of 1,1'-dialkyl-4,4'-bipyridinium dication (viologen) across the water-dichloroethane and water-nitrobenzene interfaces. Collection of Czechoslovak Chemical Communications, 1987, 52, 830-837.	1.0	7
161	Effect of the specific ion adsorption on the impedance of an interface between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry, 1997, 426, 31-35.	1.9	7
162	Electrochemical Behavior of Nanocrystalline Ru[sub 0.8]Me[sub 0.2]O[sub 2â^'x] (Me=Fe,â€,Co,â€,Ni) Oxide Electrodes in Double-Layer Region. Journal of the Electrochemical Society, 2007, 154, A1077.	1.3	7

#	Article	IF	CITATIONS
163	Ionic partition diagram of tetraphenylporphyrin at the water 1,2-dichloroethane interface. Journal of Electroanalytical Chemistry, 2011, 656, 147-151.	1.9	7
164	Voltammetric and capillary electrophoretic study of scavenger kinetics of methylglyoxal by antidiabetic biguanide drugs. Journal of Electroanalytical Chemistry, 2016, 777, 26-32.	1.9	7
165	Capacitance of the interface between two immiscible electrolyte solutions – A controversial issue. Electrochimica Acta, 2022, 403, 139720.	2.6	7
166	The use of the Frumkin correction in the kinetics of the ion transfer across the interface between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry, 1992, 333, 319-323.	1.9	6
167	Ion and pore fluid transport properties of a Nafion® membrane separating two electrolyte solutions Part II. Kinetics of the Ru(2,2-bipyridine)2+3 ion transfer. Journal of Electroanalytical Chemistry, 1995, 388, 25-34.	1.9	6
168	Negative Impedance of the Nafion Membrane Between Two Electrolyte Solutions. Journal of the Electrochemical Society, 1998, 145, 2740-2746.	1.3	6
169	A junction-free copper reference electrode for electrochemical measurements in o-nitrophenyl octyl ether. Journal of Electroanalytical Chemistry, 2002, 528, 77-81.	1.9	6
170	Correlation between the standard Gibbs energies of an anion transfer from water to highly hydrophobic ionic liquids and to 1,2-dichloroethane. Journal of Electroanalytical Chemistry, 2014, 714-715, 109-115.	1.9	6
171	Detection of antimuscarinic agents tolterodine and fesoterodine and their metabolite 5-hydroxymethyl tolterodine by ion transfer voltammetry at a polarized room-temperature ionic liquid membrane. Electrochimica Acta, 2019, 304, 54-61.	2.6	6
172	Influence of protons on electrochemical behaviour of the system quinone-hydroquinone in dichloromethane. Collection of Czechoslovak Chemical Communications, 1985, 50, 2821-2826.	1.0	6
173	Voltammetric study of the cyanide complexes of osmium—I. The reduction of the cyanide complex of Os(VI) on a platinum rde. Electrochimica Acta, 1977, 22, 243-248.	2.6	5
174	Nucleotides and related substances: Conformation in solution and at solution electrode interfaces. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1980, 116, 125-152.	0.3	4
175	Effect of the vapor-deposited Au nanoparticles on the rate of the redox reaction at the highly oriented pyrolytic graphite electrode. Journal of Electroanalytical Chemistry, 2007, 605, 31-40.	1.9	4
176	Transfer of heparin polyion across a polarized water/ionic liquid membrane interface. Electrochemistry Communications, 2012, 24, 25-27.	2.3	4
177	Electrochemical study of the anomalous salt extraction from water to a polar organic solvent. Journal of Solid State Electrochemistry, 2020, 24, 2173-2174.	1.2	4
178	Self-perturbation of the salt partition at the water/1,2-dichloroethane interface. Electrochimica Acta, 2020, 361, 137059.	2.6	4
179	Mixed electrolyte effect on the stability of the interface between two immiscible electrolyte solutions. Electrochimica Acta, 2021, 399, 139405.	2.6	4
180	Effect of the Phase Volume Ratio on the Potential of a Liquid-Membrane Ion-Selective Electrode. Analytical Chemistry, 2004, 76, 4150-4155.	3.2	3

#	Article	IF	CITATIONS
181	A Note on the Standard Electron Transfer Potential at the Interface between Two Immiscible Electrolyte Solutions. Review of Polarography, 2009, 55, 75-81.	0.0	3
182	Interfacial instability associated with the transfer of non-adsorbing ions across the polarized water/1,2-dichloroethane interface. Journal of Electroanalytical Chemistry, 2018, 819, 95-100.	1.9	3
183	A Preliminary Study of Transfer of Laurylsulfate Ion at the Water/Dichloroethane Interface Acta Chemica Scandinavica, 1988, 42a, 192-194.	0.7	3
184	Voltammetry of Several Natural and Synthetic Opioids at a Polarized Ionic Liquid Membrane. ChemElectroChem, 2021, 8, 2519-2525.	1.7	2
185	Study of the Electrical Double Layer at the Interface Between Two Immiscible Electrolyte Solutions by Impedance Measurements. , 1987, , 123-141.		2
186	Bovine Serum Albumin Adsorption at a Polarized Water/1,2â€Dichloroethane Interface with No Effect on the Ion Transfer Kinetics. ChemElectroChem, 2022, 9, .	1.7	2
187	An electrochemical viewpoint on the solubility of silver halides in water. Journal of Solid State Electrochemistry, 2020, 24, 3185-3189.	1.2	1
188	Voltammetry of Protonated Anesthetics at a Liquid Membrane: Evaluation of the Drug Propagation. , 2000, 12, 901.		1
189	A tribute to Professor J. Koryta on the occasion of his 70th birthday. Journal of Electroanalytical Chemistry, 1992, 335, 1-9.	1.9	0
190	The 48th Heyrovskü2 Discussion on Progress in Electrochemistry at Liquid-Liquid Interfaces and Liquid Membranes. Review of Polarography, 2015, 61, 75-76.	0.0	0
191	Wall-jet ion sensor based on ion transfer processes at a polarized room-temperature ionic liquid membrane. Journal of Electroanalytical Chemistry, 2020, 861, 113948.	1.9	0
192	The Modeling of the Interaction of Organic Molecules with Gold and Platinum Clusters. , 2006, , 1544-1546.		0
193	Adsorption of Gaseous Propylamine on Films of Polypyrrole in Different Oxidation States. Collection of Czechoslovak Chemical Communications, 1999, 64, 1-12.	1.0	0