Jingyou Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2766196/publications.pdf

Version: 2024-02-01

59 8,915 papers citations

30 60 h-index g-index

78 78 all docs citations

78 times ranked 13352 citing authors

#	Article	IF	CITATIONS
1	Protective Efficacy of Gastrointestinal SARS-CoV-2 Delivery against Intranasal and Intratracheal SARS-CoV-2 Challenge in Rhesus Macaques. Journal of Virology, 2022, 96, JVI0159921.	3.4	5
2	Coronavirus Disease 2019 Messenger RNA Vaccine Immunogenicity in Immunosuppressed Individuals. Journal of Infectious Diseases, 2022, 225, 1124-1128.	4.0	15
3	Optimization of non-coding regions for a non-modified mRNA COVID-19 vaccine. Nature, 2022, 601, 410-414.	27.8	71
4	Passive transfer of Ad26.COV2.S-elicited IgG from humans attenuates SARS-CoV-2 disease in hamsters. Npj Vaccines, 2022, 7, 2.	6.0	2
5	Vaccines elicit highly conserved cellular immunity to SARS-CoV-2 Omicron. Nature, 2022, 603, 493-496.	27.8	326
6	An aluminum hydroxide:CpG adjuvant enhances protection elicited by a SARS-CoV-2 receptor binding domain vaccine in aged mice. Science Translational Medicine, 2022, 14, .	12.4	57
7	A combination of two human neutralizing antibodies prevents SARS-CoV-2 infection in cynomolgus macaques. Med, 2022, 3, 188-203.e4.	4.4	11
8	Fighting Fire with Fire: Immunogenicity of Viral Vectored Vaccines against COVID-19. Viruses, 2022, 14, 380.	3.3	4
9	Durability and expansion of neutralizing antibody breadth following Ad26.COV2.S vaccination of mice. Npj Vaccines, 2022, 7, 23.	6.0	6
10	Characterization of immune responses in fully vaccinated individuals after breakthrough infection with the SARS-CoV-2 delta variant. Science Translational Medicine, 2022, 14, eabn6150.	12.4	57
11	SARS-CoV-2 receptor binding domain displayed on HBsAg virus–like particles elicits protective immunity in macaques. Science Advances, 2022, 8, eabl6015.	10.3	27
12	Vaccine protection against the SARS-CoV-2 Omicron variant in macaques. Cell, 2022, 185, 1549-1555.e11.	28.9	59
13	A homologous or variant booster vaccine after Ad26.COV2.S immunization enhances SARS-CoV-2–specific immune responses in rhesus macaques. Science Translational Medicine, 2022, 14, eabm4996.	12.4	13
14	Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants. New England Journal of Medicine, 2022, 386, 1579-1580.	27.0	296
15	Defining the determinants of protection against SARS-CoV-2 infection and viral control in a dose-down Ad26.CoV2.S vaccine study in nonhuman primates. PLoS Biology, 2022, 20, e3001609.	5.6	14
16	Reduced SARS-CoV-2 disease outcomes in Syrian hamsters receiving immune sera: Quantitative image analysis in pathologic assessments. Veterinary Pathology, 2022, , 030098582210957.	1.7	2
17	Neutralization Escape by SARS-CoV-2 Omicron Subvariants BA.2.12.1, BA.4, and BA.5. New England Journal of Medicine, 2022, 387, 86-88.	27.0	433
18	A bivalent SARS-CoV-2 monoclonal antibody combination does not affect the immunogenicity of a vector-based COVID-19 vaccine in macaques. Science Translational Medicine, 2022, 14, .	12.4	3

#	Article	IF	CITATIONS
19	Discrete SARS-CoV-2 antibody titers track with functional humoral stability. Nature Communications, 2021, 12, 1018.	12.8	82
20	Comorbid illnesses are associated with altered adaptive immune responses to SARS-CoV-2. JCI Insight, 2021, 6, .	5.0	39
21	Immunogenicity of the Ad26.COV2.S Vaccine for COVID-19. JAMA - Journal of the American Medical Association, 2021, 325, 1535.	7.4	260
22	Deletion of the SARS-CoV-2 Spike Cytoplasmic Tail Increases Infectivity in Pseudovirus Neutralization Assays. Journal of Virology, 2021, 95, .	3.4	80
23	Coronavirus-Specific Antibody Cross Reactivity in Rhesus Macaques following SARS-CoV-2 Vaccination and Infection. Journal of Virology, 2021, 95, .	3.4	24
24	Protective efficacy of Ad26.COV2.S against SARS-CoV-2 B.1.351 in macaques. Nature, 2021, 596, 423-427.	27.8	40
25	Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans. Nature, 2021, 596, 268-272.	27.8	290
26	Low-dose Ad26.COV2.S protection against SARS-CoV-2 challenge in rhesus macaques. Cell, 2021, 184, 3467-3473.e11.	28.9	49
27	Correlates of Neutralization against SARS-CoV-2 Variants of Concern by Early Pandemic Sera. Journal of Virology, 2021, 95, e0040421.	3.4	34
28	Immunogenicity of COVID-19 mRNA Vaccines in Pregnant and Lactating Women. JAMA - Journal of the American Medical Association, 2021, 325, 2370.	7.4	307
29	Immunity elicited by natural infection or Ad26.COV2.S vaccination protects hamsters against SARS-CoV-2 variants of concern. Science Translational Medicine, 2021, 13, eabj3789.	12.4	32
30	SERINC proteins potentiate antiviral type I IFN production and proinflammatory signaling pathways. Science Signaling, 2021, 14, eabc7611.	3.6	13
31	Prior infection with SARS-CoV-2 WA1/2020 partially protects rhesus macaques against reinfection with B.1.1.7 and B.1.351 variants. Science Translational Medicine, 2021, 13, eabj2641.	12.4	15
32	Durable Humoral and Cellular Immune Responses 8 Months after Ad26.COV2.S Vaccination. New England Journal of Medicine, 2021, 385, 951-953.	27.0	192
33	Protective Efficacy of Rhesus Adenovirus COVID-19 Vaccines against Mouse-Adapted SARS-CoV-2. Journal of Virology, 2021, 95, e0097421.	3.4	12
34	Engineered SARS-CoV-2 receptor binding domain improves manufacturability in yeast and immunogenicity in mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	68
35	Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature, 2021, 590, 630-634.	27.8	995
36	A Modular Biomaterial Scaffoldâ€Based Vaccine Elicits Durable Adaptive Immunity to Subunit SARS oVâ€2 Antigens. Advanced Healthcare Materials, 2021, 10, e2101370.	7.6	10

#	Article	IF	CITATIONS
37	Differential Kinetics of Immune Responses Elicited by Covid-19 Vaccines. New England Journal of Medicine, 2021, 385, 2010-2012.	27.0	228
38	SARS-CoV-2 binding and neutralizing antibody levels after Ad26.COV2.S vaccination predict durable protection in rhesus macaques. Nature Communications, 2021, 12, 5877.	12.8	21
39	Epidemiological and Immunological Features of Obesity and SARS-CoV-2. Viruses, 2021, 13, 2235.	3.3	15
40	An aluminum hydroxide:CpG adjuvant enhances protection elicited by a SARS-CoV-2 receptor-binding domain vaccine in aged mice. Science Translational Medicine, 2021, , eabj5305.	12.4	4
41	Phosphate-mediated coanchoring of RBD immunogens and molecular adjuvants to alum potentiates humoral immunity against SARS-CoV-2. Science Advances, 2021, 7, eabj6538.	10.3	19
42	Persistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients. Science Immunology, 2020, 5, .	11.9	561
43	Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature, 2020, 586, 583-588.	27.8	765
44	Approaches and Challenges in SARS-CoV-2 Vaccine Development. Cell Host and Microbe, 2020, 28, 364-370.	11.0	98
45	Distinct Early Serological Signatures Track with SARS-CoV-2 Survival. Immunity, 2020, 53, 524-532.e4.	14.3	334
46	Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters. Nature Medicine, 2020, 26, 1694-1700.	30.7	275
47	Compromised Humoral Functional Evolution Tracks with SARS-CoV-2 Mortality. Cell, 2020, 183, 1508-1519.e12.	28.9	263
48	SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science, 2020, 369, 812-817.	12.6	789
49	DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science, 2020, 369, 806-811.	12.6	978
50	Protective efficacy of an attenuated Mtb î"LprG vaccine in mice. PLoS Pathogens, 2020, 16, e1009096.	4.7	12
51	CD4-Dependent Modulation of HIV-1 Entry by LY6E. Journal of Virology, 2019, 93, .	3.4	22
52	TIM-mediated inhibition of HIV-1 release is antagonized by Nef but potentiated by SERINC proteins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5705-5714.	7.1	28
53	Emerging Role of LY6E in Virus–Host Interactions. Viruses, 2019, 11, 1020.	3.3	37
54	Relating GPI-Anchored Ly6 Proteins uPAR and CD59 to Viral Infection. Viruses, 2019, 11, 1060.	3.3	13

#	Article	IF	CITATIONS
55	The Inhibition of HIV-1 Entry Imposed by Interferon Inducible Transmembrane Proteins Is Independent of Co-Receptor Usage. Viruses, 2018, 10, 413.	3.3	10
56	The V3 Loop of HIV-1 Env Determines Viral Susceptibility to IFITM3 Impairment of Viral Infectivity. Journal of Virology, 2017, 91, .	3.4	37
57	Interferon-inducible LY6E Protein Promotes HIV-1 Infection. Journal of Biological Chemistry, 2017, 292, 4674-4685.	3.4	52
58	Nonhuman Primate IFITM Proteins Are Potent Inhibitors of HIV and SIV. PLoS ONE, 2016, 11, e0156739.	2.5	23
59	IFITM Proteins Restrict HIV-1 Infection by Antagonizing the Envelope Glycoprotein. Cell Reports, 2015, 13, 145-156.	6.4	133