Erica Seigneur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2764646/publications.pdf

Version: 2024-02-01

		20817	9589
143	24,761	60	142
papers	citations	h-index	g-index
150	150	150	24372
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	THE SYNAPTIC VESICLE CYCLE. Annual Review of Neuroscience, 2004, 27, 509-547.	10.7	2,090
2	Membrane Fusion: Grappling with SNARE and SM Proteins. Science, 2009, 323, 474-477.	12.6	1,754
3	Neuroligins and neurexins link synaptic function to cognitive disease. Nature, 2008, 455, 903-911.	27.8	1,577
4	Membrane Fusion and Exocytosis. Annual Review of Biochemistry, 1999, 68, 863-911.	11.1	1,136
5	Neurotransmitter Release: The Last Millisecond in the Life of a Synaptic Vesicle. Neuron, 2013, 80, 675-690.	8.1	952
6	The Presynaptic Active Zone. Neuron, 2012, 75, 11-25.	8.1	863
7	Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature, 1990, 345, 260-263.	27.8	788
8	Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature, 1993, 366, 347-351.	27.8	682
9	Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature, 1999, 400, 457-461.	27.8	664
10	Synaptic Neurexin Complexes: A Molecular Code for the Logic of Neural Circuits. Cell, 2017, 171, 745-769.	28.9	608
11	Putative receptor for inositol $1,4,5$ -trisphosphate similar to ryanodine receptor. Nature, $1989,342,192-195$.	27.8	547
12	SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse. Neuron, 2019, 103, 217-234.e4.	8.1	518
13	Towards an Understanding of Synapse Formation. Neuron, 2018, 100, 276-293.	8.1	445
14	A small GTP-binding protein dissociates from synaptic vesicles during exocytosis. Nature, 1991, 349, 79-81.	27.8	438
15	Synaptic Vesicle Exocytosis. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005637-a005637.	5.5	399
16	Autism-Associated Neuroligin-3 Mutations Commonly Impair Striatal Circuits to Boost Repetitive Behaviors. Cell, 2014, 158, 198-212.	28.9	397
17	\hat{l}_{\pm} -Synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4274-83.	7.1	382
18	ApoE2, ApoE3, and ApoE4 Differentially Stimulate APP Transcription and $\hat{Al^2}$ Secretion. Cell, 2017, 168, 427-441.e21.	28.9	372

#	Article	IF	CITATIONS
19	Cell Biology and Pathophysiology of \hat{l}_{\pm} -Synuclein. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a024091.	6.2	353
20	Calcium Control of Neurotransmitter Release. Cold Spring Harbor Perspectives in Biology, 2012, 4, a011353-a011353.	5.5	352
21	The Morphological and Molecular Nature of Synaptic Vesicle Priming at Presynaptic Active Zones. Neuron, 2014, 84, 416-431.	8.1	344
22	Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq. Cell Reports, 2016, 16, 1126-1137.	6.4	344
23	Generation of Induced Neuronal Cells by the Single Reprogramming Factor ASCL1. Stem Cell Reports, 2014, 3, 282-296.	4.8	312
24	Autism-associated SHANK3 haploinsufficiency causes <i>I</i> _h channelopathy in human neurons. Science, 2016, 352, aaf2669.	12.6	270
25	Architecture of the synaptotagmin–SNARE machinery for neuronal exocytosis. Nature, 2015, 525, 62-67.	27.8	268
26	Generation of pure GABAergic neurons by transcription factor programming. Nature Methods, 2017, 14, 621-628.	19.0	265
27	Structure and Evolution of Neurexin Genes: Insight into the Mechanism of Alternative Splicing. Genomics, 2002, 79, 849-859.	2.9	255
28	The primed SNARE–complexin–synaptotagmin complex for neuronal exocytosis. Nature, 2017, 548, 420-425.	27.8	229
29	α-Latrotoxin and Its Receptors: Neurexins and CIRL/Latrophilins. Annual Review of Neuroscience, 2001, 24, 933-962.	10.7	204
30	Propagation of prions causing synucleinopathies in cultured cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4949-58.	7.1	191
31	Human Neuropsychiatric Disease Modeling using Conditional Deletion Reveals Synaptic Transmission Defects Caused by Heterozygous Mutations in NRXN1. Cell Stem Cell, 2015, 17, 316-328.	11.1	187
32	Mytll safeguards neuronal identity by actively repressing many non-neuronal fates. Nature, 2017, 544, 245-249.	27.8	180
33	Conditional Deletion of All Neurexins Defines Diversity of Essential Synaptic Organizer Functions for Neurexins. Neuron, 2017, 94, 611-625.e4.	8.1	170
34	Latrophilin GPCRs direct synapse specificity by coincident binding of FLRTs and teneurins. Science, 2019, 363, .	12.6	169
35	Definition of a Molecular Pathway Mediating α-Synuclein Neurotoxicity. Journal of Neuroscience, 2015, 35, 5221-5232.	3.6	168
36	Single-cell RNAseq reveals cell adhesion molecule profiles in electrophysiologically defined neurons. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5222-31.	7.1	162

#	Article	IF	Citations
37	A molecular machine for neurotransmitter release: synaptotagmin and beyond. Nature Medicine, 2013, 19, 1227-1231.	30.7	158
38	Understanding Synapses: Past, Present, and Future. Neuron, 2008, 60, 469-476.	8.1	153
39	Postsynaptic synaptotagmins mediate AMPA receptor exocytosis during LTP. Nature, 2017, 544, 316-321.	27.8	153
40	High Affinity Neurexin Binding to Cell Adhesion G-protein-coupled Receptor CIRL1/Latrophilin-1 Produces an Intercellular Adhesion Complex. Journal of Biological Chemistry, 2012, 287, 9399-9413.	3.4	147
41	The Molecular Machinery of Neurotransmitter Release (Nobel Lecture). Angewandte Chemie - International Edition, 2014, 53, 12696-12717.	13.8	145
42	Single-Cell mRNA Profiling Reveals Cell-Type-Specific Expression of Neurexin Isoforms. Neuron, 2015, 87, 326-340.	8.1	144
43	How to Make an Active Zone: Unexpected Universal Functional Redundancy between RIMs and RIM-BPs. Neuron, 2016, 91, 792-807.	8.1	133
44	Dynamic binding mode of a Synaptotagmin-1–SNARE complex in solution. Nature Structural and Molecular Biology, 2015, 22, 555-564.	8.2	129
45	Neuroligins Sculpt Cerebellar Purkinje-Cell Circuits by Differential Control of Distinct Classes of Synapses. Neuron, 2015, 87, 781-796.	8.1	128
46	\hat{l}^2 -Neurexins Control Neural Circuits by Regulating Synaptic Endocannabinoid Signaling. Cell, 2015, 162, 593-606.	28.9	123
47	Structural Basis for Teneurin Function in Circuit-Wiring: A Toxin Motif at the Synapse. Cell, 2018, 173, 735-748.e15.	28.9	119
48	Distinct circuit-dependent functions of presynaptic neurexin-3 at GABAergic and glutamatergic synapses. Nature Neuroscience, 2015, 18, 997-1007.	14.8	109
49	Presynaptic Neuronal Pentraxin Receptor Organizes Excitatory and Inhibitory Synapses. Journal of Neuroscience, 2017, 37, 1062-1080.	3.6	102
50	Structural Basis of Latrophilin-FLRT-UNC5 Interaction in Cell Adhesion. Structure, 2015, 23, 1678-1691.	3.3	101
51	Alternative Splicing of Presynaptic Neurexins Differentially Controls Postsynaptic NMDA and AMPA Receptor Responses. Neuron, 2019, 102, 993-1008.e5.	8.1	99
52	RIM-BPs Mediate Tight Coupling of Action Potentials to Ca 2+ -Triggered Neurotransmitter Release. Neuron, 2015, 87, 1234-1247.	8.1	97
53	Continuous and Discrete Neuron Types of the Adult Murine Striatum. Neuron, 2020, 105, 688-699.e8.	8.1	92
54	Postsynaptic adhesion GPCR latrophilin-2 mediates target recognition in entorhinal-hippocampal synapse assembly. Journal of Cell Biology, 2017, 216, 3831-3846.	5.2	86

#	Article	IF	CITATIONS
55	Differential Signaling Mediated by ApoE2, ApoE3, and ApoE4 in Human Neurons Parallels Alzheimer's Disease Risk. Journal of Neuroscience, 2019, 39, 7408-7427.	3.6	85
56	Specific factors in blood from young but not old mice directly promote synapse formation and NMDA-receptor recruitment. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12524-12533.	7.1	82
57	Carbonic anhydrase-related protein CA10 is an evolutionarily conserved pan-neurexin ligand. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1253-E1262.	7.1	81
58	Synaptotagmin-7-Mediated Asynchronous Release Boosts High-Fidelity Synchronous Transmission at a Central Synapse. Neuron, 2017, 94, 826-839.e3.	8.1	81
59	A central amygdala to zona incerta projection is required for acquisition and remote recall of conditioned fear memory. Nature Neuroscience, 2018, 21, 1515-1519.	14.8	80
60	The fragile X mutation impairs homeostatic plasticity in human neurons by blocking synaptic retinoic acid signaling. Science Translational Medicine, 2018, 10, .	12.4	79
61	Synaptic neurexin-1 assembles into dynamically regulated active zone nanoclusters. Journal of Cell Biology, 2019, 218, 2677-2698.	5.2	78
62	Expression of C1ql3 in Discrete Neuronal Populations Controls Efferent Synapse Numbers andÂDiverse Behaviors. Neuron, 2016, 91, 1034-1051.	8.1	75
63	Neuroligin-4 Regulates Excitatory Synaptic Transmission in Human Neurons. Neuron, 2019, 103, 617-626.e6.	8.1	75
64	Retinoic Acid and LTP Recruit Postsynaptic AMPA Receptors Using Distinct SNARE-Dependent Mechanisms. Neuron, 2015, 86, 442-456.	8.1	72
65	Calsyntenins Function as Synaptogenic Adhesion Molecules in Concert with Neurexins. Cell Reports, 2014, 6, 1096-1109.	6.4	71
66	Modulation of excitation on parvalbumin interneurons by neuroligin-3 regulates the hippocampal network. Nature Neuroscience, 2017, 20, 219-229.	14.8	71
67	Transdifferentiation of human adult peripheral blood T cells into neurons. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6470-6475.	7.1	71
68	Synaptotagmin-1 and -7 Are Redundantly Essential for Maintaining the Capacity of the Readily-Releasable Pool of Synaptic Vesicles. PLoS Biology, 2015, 13, e1002267.	5.6	71
69	Neuroligin-1 Signaling Controls LTP and NMDA Receptors by Distinct Molecular Pathways. Neuron, 2019, 102, 621-635.e3.	8.1	67
70	The Active Zone Protein Family ELKS Supports Ca ²⁺ Influx at Nerve Terminals of Inhibitory Hippocampal Neurons. Journal of Neuroscience, 2014, 34, 12289-12303.	3.6	66
71	C-terminal domain of mammalian complexin-1 localizes to highly curved membranes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7590-E7599.	7.1	66
72	Synaptotagmin-7 phosphorylation mediates GLP-1–dependent potentiation of insulin secretion from β-cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9996-10001.	7.1	65

#	Article	IF	Citations
73	Persistent transcriptional programmes are associated with remote memory. Nature, 2020, 587, 437-442.	27.8	61
74	Neuromodulator Signaling Bidirectionally Controls Vesicle Numbers in Human Synapses. Cell, 2019, 179, 498-513.e22.	28.9	59
75	Molecular Neuroscience in the 21st Century: A Personal Perspective. Neuron, 2017, 96, 536-541.	8.1	58
76	Genetic Ablation of All Cerebellins Reveals Synapse Organizer Functions in Multiple Regions Throughout the Brain. Journal of Neuroscience, 2018, 38, 4774-4790.	3.6	58
77	Neurexins cluster Ca ²⁺ channels within the presynaptic active zone. EMBO Journal, 2020, 39, e103208.	7.8	58
78	Extended Synaptotagmin (ESyt) Triple Knock-Out Mice Are Viable and Fertile without Obvious Endoplasmic Reticulum Dysfunction. PLoS ONE, 2016, 11, e0158295.	2.5	58
79	Microsecond Dissection of Neurotransmitter Release: SNARE-Complex Assembly Dictates Speed and Ca2+ Sensitivity. Neuron, 2014, 82, 1088-1100.	8.1	56
80	Structures of C1q-like Proteins Reveal Unique Features among the C1q/TNF Superfamily. Structure, 2015, 23, 688-699.	3.3	56
81	Conditional deletion of <i>L1CAM</i> in human neurons impairs both axonal and dendritic arborization and action potential generation. Journal of Experimental Medicine, 2016, 213, 499-515.	8.5	56
82	Synaptotagmin-7 Is Essential for Ca2+-Triggered Delayed Asynchronous Release But Not for Ca2+-Dependent Vesicle Priming in Retinal Ribbon Synapses. Journal of Neuroscience, 2015, 35, 11024-11033.	3.6	53
83	Direct Visualization of <i>Trans</i> -Synaptic Neurexin–Neuroligin Interactions during Synapse Formation. Journal of Neuroscience, 2014, 34, 15083-15096.	3.6	51
84	Deletion of $\langle i \rangle$ LRRTM1 and LRRTM2 $\langle i \rangle$ in adult mice impairs basal AMPA receptor transmission and LTP in hippocampal CA1 pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5382-E5389.	7.1	51
85	GluD1 is a signal transduction device disguised as an ionotropic receptor. Nature, 2021, 595, 261-265.	27.8	51
86	Cross-platform validation of neurotransmitter release impairments in schizophrenia patient-derived $\langle i \rangle$ NRXN1 $\langle i \rangle$ -mutant neurons. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	49
87	Cerebellins are differentially expressed in selective subsets of neurons throughout the brain. Journal of Comparative Neurology, 2017, 525, 3286-3311.	1.6	48
88	IGF1-Dependent Synaptic Plasticity of Mitral Cells in Olfactory Memory during Social Learning. Neuron, 2017, 95, 106-122.e5.	8.1	48
89	RTN4/NoGo-receptor binding to BAI adhesion-GPCRs regulates neuronal development. Cell, 2021, 184, 5869-5885.e25.	28.9	45
90	Treatment of a genetic brain disease by CNS-wide microglia replacement. Science Translational Medicine, 2022, 14, eabl9945.	12.4	45

#	Article	IF	Citations
91	Latrophilin GPCR signaling mediates synapse formation. ELife, 2021, 10, .	6.0	44
92	ELKS1 localizes the synaptic vesicle priming protein bMunc13-2 to a specific subset of active zones. Journal of Cell Biology, 2017, 216, 1143-1161.	5.2	43
93	Direct Reprogramming of Human Neurons Identifies MARCKSL1 as a Pathogenic Mediator of Valproic Acid-Induced Teratogenicity. Cell Stem Cell, 2019, 25, 103-119.e6.	11.1	43
94	A Trio of Active Zone Proteins Comprised of RIM-BPs, RIMs, and Munc13s Governs Neurotransmitter Release. Cell Reports, 2020, 32, 107960.	6.4	43
95	Exceptionally tight membrane-binding may explain the key role of the synaptotagmin-7 C ₂ A domain in asynchronous neurotransmitter release. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8518-E8527.	7.1	42
96	Structure and Ca2+-Binding Properties of the Tandem C2 Domains of E-Syt2. Structure, 2014, 22, 269-280.	3.3	41
97	Synaptic retinoic acid receptor signaling mediates mTOR-dependent metaplasticity that controls hippocampal learning. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7113-7122.	7.1	40
98	A Synaptic Circuit Required for Acquisition but Not Recall of Social Transmission of Food Preference. Neuron, 2020, 107, 144-157.e4.	8.1	40
99	LAR receptor phospho-tyrosine phosphatases regulate NMDA-receptor responses. ELife, 2020, 9, .	6.0	40
100	A toolbox of nanobodies developed and validated for use as intrabodies and nanoscale immunolabels in mammalian brain neurons. ELife, $2019, 8, .$	6.0	39
101	Pro-neuronal activity of Myod1 due to promiscuous binding to neuronal genes. Nature Cell Biology, 2020, 22, 401-411.	10.3	38
102	Retinoic Acid Receptor RARα-Dependent Synaptic Signaling Mediates Homeostatic Synaptic Plasticity at the Inhibitory Synapses of Mouse Visual Cortex. Journal of Neuroscience, 2018, 38, 10454-10466.	3.6	36
103	Alternative splicing controls teneurin-latrophilin interaction and synapse specificity by a shape-shifting mechanism. Nature Communications, 2020, 11, 2140.	12.8	36
104	RIM1 and RIM2 redundantly determine Ca ²⁺ channel density and readily releasable pool size at a large hindbrain synapse. Journal of Neurophysiology, 2015, 113, 255-263.	1.8	34
105	Neuroligins Are Selectively Essential for NMDAR Signaling in Cerebellar Stellate Interneurons. Journal of Neuroscience, 2016, 36, 9070-9083.	3.6	34
106	Multiple signaling pathways are essential for synapse formation induced by synaptic adhesion molecules. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	29
107	Synaptic function of nicastrin in hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8973-8978.	7.1	27
108	Autism-associated neuroligin-4 mutation selectively impairs glycinergic synaptic transmission in mouse brainstem synapses. Journal of Experimental Medicine, 2018, 215, 1543-1553.	8.5	27

#	Article	IF	Citations
109	Efficient stimulus-secretion coupling at ribbon synapses requires RIM-binding protein tethering of L-type Ca ²⁺ channels. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8081-E8090.	7.1	26
110	Deorphanizing FAM19A proteins as pan-neurexin ligands with an unusual biosynthetic binding mechanism. Journal of Cell Biology, 2020, 219, .	5.2	26
111	Cbln2 and Cbln4 are expressed in distinct medial habenula-interpeduncular projections and contribute to different behavioral outputs. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10235-E10244.	7.1	25
112	FoxO3 regulates neuronal reprogramming of cells from postnatal and aging mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8514-8519.	7.1	24
113	Neurexins regulate presynaptic GABAB-receptors at central synapses. Nature Communications, 2021, 12, 2380.	12.8	24
114	The Neurobiology of Opioid Addiction and the Potential for Prevention Strategies. JAMA - Journal of the American Medical Association, 2018, 319, 2071.	7.4	22
115	Membrane fusion as a team effort. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13541-13542.	7.1	21
116	Synaptic Function of Rab11Fip5: Selective Requirement for Hippocampal Long-Term Depression. Journal of Neuroscience, 2015, 35, 7460-7474.	3.6	21
117	Ablation of All Synaptobrevin vSNAREs Blocks Evoked But Not Spontaneous Neurotransmitter Release at Neuromuscular Synapses. Journal of Neuroscience, 2019, 39, 6049-6066.	3.6	21
118	A simple Ca2+-imaging approach to neural network analyses in cultured neurons. Journal of Neuroscience Methods, 2021, 349, 109041.	2.5	21
119	Latrophilin-2 and latrophilin-3 are redundantly essential for parallel-fiber synapse function in cerebellum. ELife, 2020, 9, .	6.0	21
120	Structures of neurexophilin–neurexin complexes reveal a regulatory mechanism of alternative splicing. EMBO Journal, 2019, 38, e101603.	7.8	19
121	Evolution of the Autism-Associated Neuroligin-4 Gene Reveals Broad Erosion of Pseudoautosomal Regions in Rodents. Molecular Biology and Evolution, 2020, 37, 1243-1258.	8.9	19
122	Biallelic variants in TSPOAP1, encoding the active-zone protein RIMBP1, cause autosomal recessive dystonia. Journal of Clinical Investigation, 2021, 131, .	8.2	18
123	Cerebellin-2 regulates a serotonergic dorsal raphe circuit that controls compulsive behaviors. Molecular Psychiatry, 2021, 26, 7509-7521.	7.9	18
124	Experimental mismatch in neural circuits. Nature, 2015, 528, 338-339.	27.8	17
125	Teneurins assemble into presynaptic nanoclusters that promote synapse formation via postsynaptic non-teneurin ligands. Nature Communications, 2022, 13, 2297.	12.8	17
126	Neuroligin-3 confines AMPA receptors into nanoclusters, thereby controlling synaptic strength at the calyx of Held synapses. Science Advances, 2022, 8, .	10.3	17

#	Article	IF	CITATIONS
127	Ubiquitin–Synaptobrevin Fusion Protein Causes Degeneration of Presynaptic Motor Terminals in Mice. Journal of Neuroscience, 2015, 35, 11514-11531.	3.6	16
128	Synaptic Vesicles: An Organelle Comes of Age. Cell, 2006, 127, 671-673.	28.9	15
129	Anatomical and Behavioral Investigation of <i>C1ql3</i> in the Mouse Suprachiasmatic Nucleus. Journal of Biological Rhythms, 2017, 32, 222-236.	2.6	15
130	<scp>RIM</scp> â€binding proteins recruit BKâ€channels to presynaptic release sites adjacent to voltageâ€gated Ca ²⁺ â€channels. EMBO Journal, 2018, 37, .	7.8	15
131	Cannabinoid receptor activation acutely increases synaptic vesicle numbers by activating synapsins in human synapses. Molecular Psychiatry, 2021, 26, 6253-6268.	7.9	15
132	The conditional KO approach: Cre/Lox technology in human neurons. Rare Diseases (Austin, Tex), 2016, 4, e1131884.	1.8	10
133	The Perils of Navigating Activity-Dependent Alternative Splicing of Neurexins. Frontiers in Molecular Neuroscience, 2021, 14, 659681.	2.9	10
134	Myt1l haploinsufficiency leads to obesity and multifaceted behavioral alterations in mice. Molecular Autism, 2022, 13, 19.	4.9	10
135	Molecular self-avoidance in synaptic neurexin complexes. Science Advances, 2021, 7, eabk1924.	10.3	9
136	Truth in Science Publishing: A Personal Perspective. PLoS Biology, 2016, 14, e1002547.	5.6	7
137	Transsynaptic cerebellin 4–neogenin 1 signaling mediates LTP in the mouse dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2123421119.	7.1	6
138	Induction of synapse formation by de novo neurotransmitter synthesis. Nature Communications, 2022, 13, .	12.8	6
139	Engineered synaptic tools reveal localized cAMP signaling in synapse assembly. Journal of Cell Biology, 2022, 221, .	5.2	5
140	RIBEYE B-Domain Is Essential for RIBEYE A-Domain Stability and Assembly of Synaptic Ribbons. Frontiers in Molecular Neuroscience, 2022, 15, 838311.	2.9	4
141	Deletion of Calsyntenin-3, an atypical cadherin, suppresses inhibitory synapses but increases excitatory parallel-fiber synapses in cerebellum. ELife, 2022, 11, .	6.0	4
142	Der molekulare Mechanismus der Neurotransmitterfreisetzung und Nervenzellâ€Synapsen (Nobelâ€Aufsatz). Angewandte Chemie, 2014, 126, 12906-12931.	2.0	3
143	CB1 receptor activation rapidly alters synaptic vesicle numbers in mouse hippocampal synapses. Molecular Psychiatry, 2021, 26, 6103-6103.	7.9	0