
Adela A M SÃ;nchez-Moreiras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2764455/publications.pdf

Version: 2024-02-01

2

#	Article	IF	CITATIONS
1	Weed pressure determines the chemical profile of wheat (<scp><i>Triticum aestivum</i> L.</scp>) and its allelochemicals potential. Pest Management Science, 2022, 78, 1605-1619.	3.4	7
2	Ultrastructural and hormonal changes related to harmaline-induced treatment in Arabidopsis thaliana (L.) Heynh. root meristem. Plant Physiology and Biochemistry, 2022, 179, 78-89.	5.8	4
3	Ecophysiological Responses of Tall Wheatgrass Germplasm to Drought and Salinity. Plants, 2022, 11, 1548.	3.5	4
4	Morphoâ€physiological, biochemical and isotopic response of tall wheatgrass populations to salt stress. Journal of Agronomy and Crop Science, 2021, 207, 236-248.	3.5	3
5	Unraveling Sorghum Allelopathy in Agriculture: Concepts and Implications. Plants, 2021, 10, 1795.	3.5	33
6	Transcriptome and binding data indicate that citral inhibits single strand DNAâ€binding proteins. Physiologia Plantarum, 2020, 169, 99-109.	5.2	10
7	Phytotoxic Effects and Mechanism of Action of Essential Oils and Terpenoids. Plants, 2020, 9, 1571.	3.5	95
8	Imaging of Chlorophyll a Fluorescence in Natural Compound-Induced Stress Detection. Frontiers in Plant Science, 2020, 11, 583590.	3.6	29
9	Phytotoxic Activity of the Natural Compound Norharmane on Crops, Weeds and Model Plants. Plants, 2020, 9, 1328.	3.5	10
10	Phytotoxic Effects of Three Natural Compounds: Pelargonic Acid, Carvacrol, and Cinnamic Aldehyde, against Problematic Weeds in Mediterranean Crops. Agronomy, 2020, 10, 791.	3.0	31
11	Herbicidal Activity of Thymbra capitata (L.) Cav. Essential Oil. Molecules, 2020, 25, 2832.	3.8	18
12	A natural indole alkaloid, norharmane, affects PIN expression patterns and compromises root growth in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2020, 151, 378-390.	5.8	17
13	Transcriptome responses to the natural phytotoxin <i>t</i> â€chalcone in <scp><i>Arabidopsis thaliana</i></scp> L. Pest Management Science, 2019, 75, 2490-2504.	3.4	11
14	Rosmarinic acid induces programmed cell death in Arabidopsis seedlings through reactive oxygen species and mitochondrial dysfunction. PLoS ONE, 2018, 13, e0208802.	2.5	38
15	Morpho-physiological responses of tall wheatgrass populations to different levels of water stress. PLoS ONE, 2018, 13, e0209281.	2.5	14
16	Flow Cytometry: Cell Cycle. , 2018, , 215-229.		0
17	Confocal and Transmission Electron Microscopy for Plant Studies. , 2018, , 253-271.		1

18 Elucidating the Phytotoxic Potential of Natural Compounds. , 2018, , 363-378.

2

#	Article	IF	CITATIONS
19	Terpenoid <i>trans</i> â€caryophyllene inhibits weed germination and induces plant water status alteration and oxidative damage in adult <i>Arabidopsis</i> . Plant Biology, 2017, 19, 79-89.	3.8	49
20	Auxin-like effects of the natural coumarin scopoletin on Arabidopsis cell structure and morphology. Journal of Plant Physiology, 2017, 218, 45-55.	3.5	35
21	Plasma membrane depolarization precedes photosynthesis damage and long-term leaf bleaching in (E)-chalcone-treated Arabidopsis shoots. Journal of Plant Physiology, 2017, 218, 56-65.	3.5	10
22	Loss of Gravitropism in Farnesene-Treated Arabidopsis Is Due to Microtubule Malformations Related to Hormonal and ROS Unbalance. PLoS ONE, 2016, 11, e0160202.	2.5	46
23	BIOLOGICAL ACTIVITIES AND NOVEL APPLICATIONS OF CHALCONES. Planta Daninha, 2016, 34, 607-616.	O.5	60
24	The plant secondary metabolite citral alters water status and prevents seed formation in <i>Arabidopsis thaliana</i> . Plant Biology, 2016, 18, 423-432.	3.8	14
25	Phytotoxic Potential of Trans-chalcone on Crop Plants and Model Species. Journal of Plant Growth Regulation, 2014, 33, 181-194.	5.1	24
26	Citral Induces Auxin and Ethylene-Mediated Malformations and Arrests Cell Division in Arabidopsis thaliana Roots. Journal of Chemical Ecology, 2013, 39, 271-282.	1.8	66
27	Individual and joint activity of terpenoids, isolated from <i>Calamintha nepeta</i> extract, on <i>Arabidopsis thaliana</i> . Natural Product Research, 2013, 27, 2297-2303.	1.8	28
28	The Phytotoxic Potential of the Terpenoid Citral on Seedlings and Adult Plants. Weed Science, 2013, 61, 469-481.	1.5	28
29	The role of peroxidases on the mode of action of chalcone in Arabidopsis roots. Plant Signaling and Behavior, 2012, 7, 1274-1276.	2.4	8
30	Tolerance of Arabidopsis thaliana to the Allelochemical Protocatechualdehyde. Journal of Plant Growth Regulation, 2012, 31, 406-415.	5.1	9
31	Early photosynthetic response of Arabidopsis thaliana to temperature and salt stress conditions. Russian Journal of Plant Physiology, 2012, 59, 640-647.	1.1	6
32	The major volatile organic compound emitted from <i>Arabidopsis thaliana</i> flowers, the sesquiterpene (<i>E</i>)â€Î²â€€aryophyllene, is a defense against a bacterial pathogen. New Phytologist, 2012, 193, 997-1008.	7.3	408
33	The early response of Arabidopsis thaliana to cadmium- and copper-induced stress. Environmental and Experimental Botany, 2012, 78, 1-9.	4.2	33
34	The natural compound transâ€chalcone induces programmed cell death in <i>Arabidopsis thaliana</i> roots. Plant, Cell and Environment, 2012, 35, 1500-1517.	5.7	53
35	Imaging chlorophyll a fluorescence reveals specific spatial distributions under different stress conditions. Flora: Morphology, Distribution, Functional Ecology of Plants, 2011, 206, 836-844.	1.2	25
36	Early senescence induced by 2-3H-benzoxazolinone (BOA) in Arabidopsis thaliana. Journal of Plant Physiology, 2011, 168, 863-870.	3.5	25

Adela A M SÃinchez-Moreiras

#	Article	IF	CITATIONS
37	Reduced Photosynthetic Activity is Directly Correlated with 2-(3H)-benzoxazolinone Accumulation in Lettuce Leaves. Journal of Chemical Ecology, 2010, 36, 205-209.	1.8	23
38	2â€3 <i>H</i> â€Benzoxazolinone (BOA) induces loss of salt tolerance in saltâ€adapted plants. Plant Biology, 2009, 11, 582-590.	3.8	10
39	The natural compound benzoxazolin-2(3H)-one selectively retards cell cycle in lettuce root meristems. Phytochemistry, 2008, 69, 2172-2179.	2.9	62
40	Genomic Approaches to Understanding Allelochemical Effects on Plants. , 2008, , 157-167.		7
41	Cell cycle analyses for understanding growth inhibition. , 2006, , 141-156.		1
42	Physiological Effects of 2-Benzoxazolinone on Lettuce. ACS Symposium Series, 2006, , 48-61.	0.5	0
43	Whole Plant Response of Lettuce After Root Exposure to BOA (2(3H)-Benzoxazolinone). Journal of Chemical Ecology, 2005, 31, 2689-2703.	1.8	59
44	Detoxification and Transcriptome Response in Arabidopsis Seedlings Exposed to the Allelochemical Benzoxazolin-2(3H)-one. Journal of Biological Chemistry, 2005, 280, 21867-21881.	3.4	165
45	Assessment of D-Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (Rubisco) Enzymatic Activity. , 2001, , 383-397.		Ο
46	Gas Exchange Techniques in Photosynthesis and Respiration Infrared Gas Analyser. , 2001, , 113-139.		4
47	Flow Cytometry: Principles and Instrumentation. , 2001, , 21-34.		1
48	Root Uptake and Release of Ions. , 2001, , 413-427.		1
49	Determination of Transpiration Using A Steady-State Porometer. , 2001, , 223-233.		0
50	Two-Dimensional Electrophoresis. Stress Proteins. , 2001, , 297-333.		1
51	ATP Phosphohydrolase Activity. , 2001, , 399-412.		Ο