
Mou-Yuan Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2764124/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Sloan Digital Sky Survey Reverberation Mapping Project: Hα and Hβ Reverberation Measurements from First-year Spectroscopy and Photometry. Astrophysical Journal, 2017, 851, 21.	4.5	168
2	THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: FIRST BROAD-LINE HÎ ² AND Mg ii LAGS AT zÂâ‰3Â0.3 FROM SIX-MONTH SPECTROSCOPY. Astrophysical Journal, 2016, 818, 30.	4.5	116
3	THE BIASES OF OPTICAL LINE-RATIO SELECTION FOR ACTIVE GALACTIC NUCLEI AND THE INTRINSIC RELATIONSHIP BETWEEN BLACK HOLE ACCRETION AND GALAXY STAR FORMATION. Astrophysical Journal, 2015, 811, 26.	4.5	111
4	<i>>FERMI</i> BUBBLES INFLATED BY WINDS LAUNCHED FROM THE HOT ACCRETION FLOW IN SGR A*. Astrophysical Journal, 2014, 790, 109.	4.5	73
5	EVOLUTION IN THE BLACK HOLE–GALAXY SCALING RELATIONS AND THE DUTY CYCLE OF NUCLEAR ACTIVITY IN STAR-FORMING GALAXIES. Astrophysical Journal, 2015, 802, 14.	4.5	63
6	THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: ENSEMBLE SPECTROSCOPIC VARIABILITY OF QUASAR BROAD EMISSION LINES. Astrophysical Journal, 2015, 811, 42.	4.5	45
7	The Sloan Digital Sky Survey Reverberation Mapping Project: Accretion Disk Sizes from Continuum Lags. Astrophysical Journal, 2019, 880, 126.	4.5	40
8	GRAVITATIONAL WAVES OF JET PRECESSION IN GAMMA-RAY BURSTS. Astrophysical Journal, 2012, 752, 31.	4.5	37
9	THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: POST-STARBURST SIGNATURES IN QUASAR HOST GALAXIES AT <i>z</i>	4.5	36
10	Understanding Broad Mg ii Variability in Quasars with Photoionization: Implications for Reverberation Mapping and Changing-look Quasars. Astrophysical Journal, 2020, 888, 58.	4.5	35
11	The Sloan Digital Sky Survey Reverberation Mapping Project: The C iv Blueshift, Its Variability, and Its Dependence Upon Quasar Properties. Astrophysical Journal, 2018, 854, 128.	4.5	33
12	How Far Is Quasar UV/Optical Variability from a Damped Random Walk at Low Frequency?. Astrophysical Journal, 2017, 847, 132.	4.5	32
13	THE ACCRETION WIND MODEL OF <i>FERMI</i> BUBBLES. II. RADIATION. Astrophysical Journal, 2015, 811, 37.	4.5	30
14	Corona-heated Accretion-disk Reprocessing: A Physical Model to Decipher the Melody of AGN UV/Optical Twinkling. Astrophysical Journal, 2020, 891, 178.	4.5	30
15	TIME EVOLUTION OF FLARES IN GRB 130925A: JET PRECESSION IN A BLACK HOLE ACCRETION SYSTEM. Astrophysical Journal Letters, 2014, 781, L19.	8.3	28
16	EUCLIA—Exploring the UV/Optical Continuum Lag in Active Galactic Nuclei. I. A Model without Light Echoing. Astrophysical Journal, 2018, 855, 117.	4.5	28
17	Discovery of an Mg iiÂChanging-look Active Galactic Nucleus and Its Implications for a Unification Sequence of Changing-look Active Galactic Nuclei. Astrophysical Journal Letters, 2019, 883, L44.	8.3	26
18	Mining for Candidates of Galactic Stellar-mass Black Hole Binaries with LAMOST. Astrophysical Journal, 2019, 886, 97.	4.5	24

Mou-Yuan Sun

#	Article	lF	CITATIONS
19	Piercing through Highly Obscured and Compton-thick AGNs in the Chandra Deep Fields. I. X-Ray Spectral and Long-term Variability Analyses. Astrophysical Journal, 2019, 877, 5.	4.5	23
20	THE UNIVERSAL "HEARTBEAT―OSCILLATIONS IN BLACK HOLE SYSTEMS ACROSS THE MASS-SCALE. Astrophysical Journal, 2016, 833, 79.	4.5	22
21	Winds can â€~blow up' AGN accretion disc sizes. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2788-2794.	4.4	22
22	Final Compact Remnants in Core-collapse Supernovae from 20 to 40 M _⊙ : The Lower Mass Gap. Astrophysical Journal, 2021, 908, 106.	4.5	20
23	Evolution of Quasar Stochastic Variability along Its Main Sequence. Astrophysical Journal, 2018, 866, 74.	4.5	17
24	A Falling Corona Model for the Anomalous Behavior of the Broad Emission Lines in NGC 5548. Astrophysical Journal, 2018, 857, 86.	4.5	17
25	Synchronized Coevolution between Supermassive Black Holes and Galaxies over the Last Seven Billion Years as Revealed by Hyper Suprime-Cam. Astrophysical Journal, 2021, 922, 142.	4.5	17
26	THICK ACCRETION DISK MODEL FOR ULTRALUMINOUS SUPERSOFT SOURCES. Astrophysical Journal Letters, 2016, 818, L4.	8.3	16
27	The XMM-SERVS Survey: XMM-Newton Point-source Catalogs for the W-CDF-S and ELAIS-S1 Fields. Astrophysical Journal, Supplement Series, 2021, 256, 21.	7.7	16
28	EUCLIA. II. On the Puzzling Large UV to X-Ray Lags in Seyfert Galaxies. Astrophysical Journal, 2020, 892, 63.	4.5	16
29	High-redshift Extreme Variability Quasars from Sloan Digital Sky Survey Multiepoch Spectroscopy. Astrophysical Journal, 2020, 905, 52.	4.5	15
30	On the UV/Optical Variation in NGC 5548: New Evidence Against the Reprocessing Diagram. Astrophysical Journal, 2018, 860, 29.	4.5	14
31	Evidence for quasar fast outflows being accelerated at the scale of tens of parsecs. Science Advances, 2022, 8, eabk3291.	10.3	14
32	Relation between the Variations in the Mg ii λ2798 Emission Line and 3000 à Continuum. Astrophysical Journal, 2017, 843, 30.	4.5	13
33	Faint Active Galactic Nuclei Favor Unexpectedly Long Inter-band Time Lags. Astrophysical Journal Letters, 2021, 912, L29.	8.3	12
34	Piercing through Highly Obscured and Compton-thick AGNs in the Chandra Deep Fields. II. Are Highly Obscured AGNs the Missing Link in the Merger-triggered AGN–Galaxy Coevolution Models?. Astrophysical Journal, 2020, 903, 49.	4.5	11
35	AGNs Are Not That Cool: Revisiting the Intrinsic AGN Far-infrared Spectral Energy Distribution. Astrophysical Journal, 2020, 894, 21.	4.5	10
36	Modeling Quasar UV/Optical Variability with the Corona-heated Accretion-disk Reprocessing (CHAR) Model. Astrophysical Journal, 2020, 902, 7.	4.5	9

Mou-Yuan Sun

#	Article	IF	CITATIONS
37	UNDERSTANDING SIMULATIONS OF THIN ACCRETION DISKS BY ENERGY EQUATION. Astrophysical Journal, 2012, 761, 29.	4.5	7
38	On the origin of the HLX-1 outbursts. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 463, L99-L102.	3.3	7
39	An Extraordinary Response of Iron Emission to the Central Outburst in a Tidal Disruption Event Candidate. Astrophysical Journal Letters, 2021, 907, L29.	8.3	6
40	A Long-period Pre-ELM System Discovered from the LAMOST Medium-resolution Survey. Astrophysical Journal, 2022, 933, 193.	4.5	6
41	Thick-disc model to explain the spectral state transition in NGC 247. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2558-2561.	4.4	5
42	The Sloan Digital Sky Survey Reverberation Mapping Project: UV–Optical Accretion Disk Measurements with the Hubble Space Telescope. Astrophysical Journal, 2022, 926, 225.	4.5	5
43	Thermal Equilibrium Solutions of Black Hole Accretion Flows: Outflows versus Advection. Astrophysical Journal, 2022, 930, 108.	4.5	5
44	Neutrino-dominated Accretion Flows: A Second Nucleosynthesis Factory in Core-collapse Supernovae and Regulating the Iron Markets in Galaxies. Astrophysical Journal, 2021, 920, 5.	4.5	4
45	X-ray absorption and 9.7 μm silicate feature as a probe of AGN torus structure. Research in Astronomy and Astrophysics, 2020, 20, 147.	1.7	4
46	Reconciling the 16.35-day Period of FRB 20180916B with Jet Precession. Astrophysical Journal, 2021, 921, 147.	4.5	4
47	On the origin of the dramatic spectral variability of WPVS 007. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4592-4602.	4.4	3
48	The Disk Veiling Effect of the Black Hole Low-mass X-Ray Binary A0620-00*. Astrophysical Journal, 2022, 925, 83.	4.5	0