Flavia Ferrantelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2762655/publications.pdf

Version: 2024-02-01

46 papers

1,472 citations

331538 21 h-index 330025 37 g-index

51 all docs

51 docs citations

51 times ranked

1467 citing authors

#	Article	IF	CITATIONS
1	Strong SARS-CoV-2 N-Specific CD8+ T Immunity Induced by Engineered Extracellular Vesicles Associates with Protection from Lethal Infection in Mice. Viruses, 2022, 14, 329.	1.5	11
2	Generation, Characterization, and Count of Fluorescent Extracellular Vesicles. Methods in Molecular Biology, 2022, 2504, 207-217.	0.4	0
3	Activation of Anti-SARS-CoV-2 Human CTLs by Extracellular Vesicles Engineered with the N Viral Protein. Vaccines, 2022, 10, 1060.	2.1	4
4	Simultaneous CD8+ T-Cell Immune Response against SARS-Cov-2 S, M, and N Induced by Endogenously Engineered Extracellular Vesicles in Both Spleen and Lungs. Vaccines, 2021, 9, 240.	2.1	20
5	The C-Terminal Domain of Nefmut Is Dispensable for the CD8+ T Cell Immunogenicity of In Vivo Engineered Extracellular Vesicles. Vaccines, 2021, 9, 373.	2.1	4
6	Long-Term Antitumor CD8+ T Cell Immunity Induced by Endogenously Engineered Extracellular Vesicles. Cancers, 2021, 13, 2263.	1.7	5
7	Extracellular vesicle-mediated intercellular communication in HIV-1 infection and its role in the reservoir maintenance. Cytokine and Growth Factor Reviews, 2020, 51, 40-48.	3.2	6
8	Exploiting Manipulated Small Extracellular Vesicles to Subvert Immunosuppression at the Tumor Microenvironment through Mannose Receptor/CD206 Targeting. International Journal of Molecular Sciences, 2020, 21, 6318.	1.8	17
9	N-Terminal Fatty Acids of NEFMUT Are Required for the CD8+ T-Cell Immunogenicity of In Vivo Engineered Extracellular Vesicles. Vaccines, 2020, 8, 243.	2.1	8
10	Engineered Extracellular Vesicles/Exosomes as a New Tool against Neurodegenerative Diseases. Pharmaceutics, 2020, 12, 529.	2.0	11
11	Anti-Cancer Vaccine for HPV-Associated Neoplasms: Focus on a Therapeutic HPV Vaccine Based on a Novel Tumor Antigen Delivery Method Using Endogenously Engineered Exosomes. Cancers, 2019, 11, 138.	1.7	30
12	Tumor cells endowed with professional antigen-presenting cell functions prime PBLs to generate antitumor CTLs. Journal of Molecular Medicine, 2019, 97, 1139-1153.	1.7	4
13	<p>The Intracellular Delivery Of Anti-HPV16 E7 scFvs Through Engineered Extracellular Vesicles Inhibits The Proliferation Of HPV-Infected Cells</p> . International Journal of Nanomedicine, 2019, Volume 14, 8755-8768.	3.3	18
14	An Exosomeâ€Based Vaccine Platform Imparts Cytotoxic T Lymphocyte Immunity Against Viral Antigens. Biotechnology Journal, 2018, 13, e1700443.	1.8	77
15	Engineered exosomes emerging from muscle cells break immune tolerance to HER2 in transgenic mice and induce antigen-specific CTLs upon challenge by human dendritic cells. Journal of Molecular Medicine, 2018, 96, 211-221.	1.7	29
16	DNA Vectors Generating Engineered Exosomes Potential CTL Vaccine Candidates Against AIDS, Hepatitis B, and Tumors. Molecular Biotechnology, 2018, 60, 773-782.	1.3	24
17	Genetic diversity in the env V1-V2 region of proviral quasispecies from long-term controller MHC-typed cynomolgus macaques infected with SHIV SF162P4cy. Journal of General Virology, 2018, 99, 1717-1728.	1.3	3
18	Exosomes in Therapy: Engineering, Pharmacokinetics and Future Applications. Current Drug Targets, 2018, 20, 87-95.	1.0	34

#	Article	IF	Citations
19	Trans-dissemination of exosomes from HIV-1-infected cells fosters both HIV-1 trans-infection in resting CD4+ T lymphocytes and reactivation of the HIV-1 reservoir. Archives of Virology, 2017, 162, 2565-2577.	0.9	11
20	Antitumor HPV E7-specific CTL activity elicited by in vivo engineered exosomes produced through DNA inoculation. International Journal of Nanomedicine, 2017, Volume 12, 4579-4591.	3.3	58
21	HIV-1 Tat protein vaccination in mice infected with Mycobacterium tuberculosis is safe, immunogenic and reduces bacterial lung pathology. BMC Infectious Diseases, 2016, 16, 442.	1.3	8
22	Effect of MHC Haplotype on Immune Response upon Experimental SHIVSF162P4cy Infection of Mauritian Cynomolgus Macaques. PLoS ONE, 2014, 9, e93235.	1.1	10
23	Biocompatible Anionic Polymeric Microspheres as Priming Delivery System for Effetive HIV/AIDS Tat-Based Vaccines. PLoS ONE, 2014, 9, e111360.	1.1	4
24	Influence of MHC class I and II haplotypes on the experimental infection of Mauritian cynomolgus macaques with SHIV _{SF162P4cy} . Tissue Antigens, 2012, 80, 36-45.	1.0	7
25	HIV-1 Tat Promotes Integrin-Mediated HIV Transmission to Dendritic Cells by Binding Env Spikes and Competes Neutralization by Anti-HIV Antibodies. PLoS ONE, 2012, 7, e48781.	1.1	56
26	A combination HIV vaccine based on Tat and Env proteins was immunogenic and protected macaques from mucosal SHIV challenge in a pilot study. Vaccine, 2011, 29, 2918-2932.	1.7	20
27	HIV-1 Tat-Based Vaccines: An Overview and Perspectives in the Field of HIV/AIDS Vaccine Development. International Reviews of Immunology, 2009, 28, 285-334.	1.5	38
28	Problems and emerging approaches in HIV/AIDS vaccine development. Expert Opinion on Emerging Drugs, 2007, 12, 23-48.	1.0	31
29	Time dependence of protective post-exposure prophylaxis with human monoclonal antibodies against pathogenic SHIV challenge in newborn macaques. Virology, 2007, 358, 69-78.	1.1	38
30	DNA prime/protein boost immunization against HIV clade C: Safety and immunogenicity in mice. Vaccine, 2006, 24, 2324-2332.	1.7	19
31	Building collaborative networks for HIV/AIDS vaccine development: the AVIP experience. Seminars in Immunopathology, 2006, 28, 289-301.	4.0	6
32	Vaccines based on the native HIV Tat protein and on the combination of Tat and the structural HIV protein variant î"V2 Env. Microbes and Infection, 2005, 7, 1392-1399.	1.0	17
33	Older Rhesus Macaque Infants Are More Susceptible to Oral Infection with Simian-Human Immunodeficiency Virus 89.6P than Neonates. Journal of Virology, 2005, 79, 1333-1336.	1.5	10
34	Complete Protection of Neonatal Rhesus Macaques against Oral Exposure to Pathogenic Simianâ∈Human Immunodeficiency Virus by Human Antiâ∈HIV Monoclonal Antibodies. Journal of Infectious Diseases, 2004, 189, 2167-2173.	1.9	141
35	Potent Crossâ€Group Neutralization of Primary Human Immunodeficiency Virus Isolates with Monoclonal Antibodiesâ€"Implications for Acquired Immunodeficiency Syndrome Vaccine. Journal of Infectious Diseases, 2004, 189, 71-74.	1.9	42
36	Nonstructural HIV proteins as targets for prophylactic or therapeutic vaccines. Current Opinion in Biotechnology, 2004, 15, 543-556.	3.3	32

#	Article	lF	CITATION
37	Immunoprophylaxis to Prevent Mother-to-Child Transmission of HIV-1. Journal of Acquired Immune Deficiency Syndromes (1999), 2004, 35, 169-177.	0.9	61
38	Antibody protection: passive immunization of neonates against oral AIDS virus challenge. Vaccine, 2003, 21, 3370-3373.	1.7	64
39	Primary African HIV Clade A and D Isolates: Effective Cross-Clade Neutralization with a Quadruple Combination of Human Monoclonal Antibodies Raised against Clade B. AIDS Research and Human Retroviruses, 2003, 19, 125-131.	0.5	25
40	Post-exposure prophylaxis with human monoclonal antibodies prevented SHIV89.6P infection or disease in neonatal macaques. Aids, 2003, 17, 301-309.	1.0	94
41	Do not underestimate the power of antibodies—lessons from adoptive transfer of antibodies against HIV. Vaccine, 2002, 20, A61-A65.	1.7	31
42	Neutralizing antibodies against HIV – back in the major leagues?. Current Opinion in Immunology, 2002, 14, 495-502.	2.4	87
43	Postnatal Passive Immunization of Neonatal Macaques with a Triple Combination of Human Monoclonal Antibodies against Oral Simian-Human Immunodeficiency Virus Challenge. Journal of Virology, 2001, 75, 7470-7480.	1.5	158
44	<i>ci>cis</i> Expression of the F12 Human Immunodeficiency Virus (HIV) Nef Allele Transforms the Highly Productive NL4-3 HIV Type 1 to a Replication-Defective Strain: Involvement of both Env gp41 and CD4 Intracytoplasmic Tails. Journal of Virology, 2000, 74, 483-492.	1.5	32
45	T-tropic human immunodeficiency virus (HIV) type 1 Nef protein enters human monocyte–macrophages and induces resistance to HIV replication: a possible mechanism of HIV T-tropic emergence in AIDS. Journal of General Virology, 2000, 81, 2905-2917.	1.3	37
46	E2F activates late-G1 events but cannot replace E1A in inducing S phase in terminally differentiated skeletal muscle cells. Oncogene, 1999, 18, 5054-5062.	2.6	21