
## **Thomas Ried**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2762413/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Chromatin Mechanisms Driving Cancer. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040956.                                                                                                  | 5.5 | 9         |
| 2  | Shifting the Focus of Signaling Abnormalities in Colon Cancer. Cancers, 2022, 14, 784.                                                                                                               | 3.7 | 3         |
| 3  | Gene-expression profiles of pretreatment biopsies predict complete response of rectal cancer patients to preoperative chemoradiotherapy. British Journal of Cancer, 2022, 127, 766-775.              | 6.4 | 6         |
| 4  | Molecular characterization of ulcerative colitis-associated colorectal carcinomas. Modern<br>Pathology, 2021, 34, 1153-1166.                                                                         | 5.5 | 7         |
| 5  | TCF7L2 silencing results in altered gene expression patterns accompanied by local genomic reorganization. Neoplasia, 2021, 23, 257-269.                                                              | 5.3 | 4         |
| 6  | CENP-A overexpression promotes aneuploidy with karyotypic heterogeneity. Journal of Cell Biology, 2021, 220, .                                                                                       | 5.2 | 28        |
| 7  | Characterization of genetically defined sporadic and hereditary type 1 papillary renal cell carcinoma cell lines. Genes Chromosomes and Cancer, 2021, 60, 434-446.                                   | 2.8 | 10        |
| 8  | Hard wiring of normal tissue-specific chromosome-wide gene expression levels is an additional factor driving cancer type-specific aneuploidies. Genome Medicine, 2021, 13, 93.                       | 8.2 | 10        |
| 9  | Tumor heterogeneity assessed by sequencing and fluorescence <i>in situ</i> hybridization (FISH) data.<br>Bioinformatics, 2021, 37, 4704-4711.                                                        | 4.1 | 5         |
| 10 | Clonal selection of stable aneuploidies in progenitor cells drives high-prevalence tumorigenesis.<br>Genes and Development, 2021, 35, 1079-1092.                                                     | 5.9 | 35        |
| 11 | Single Cell Genetic Profiling of Tumors of Breast Cancer Patients Aged 50 Years and Older Reveals<br>Enormous Intratumor Heterogeneity Independent of Individual Prognosis. Cancers, 2021, 13, 3366. | 3.7 | 8         |
| 12 | <i>TP53</i> loss initiates chromosomal instability in fallopian tube epithelial cells. DMM Disease<br>Models and Mechanisms, 2021, 14, .                                                             | 2.4 | 17        |
| 13 | Mitochondrial DNA alterations underlie an irreversible shift to aerobic glycolysis in fumarate<br>hydratase–deficient renal cancer. Science Signaling, 2021, 14, .                                   | 3.6 | 64        |
| 14 | Joint Clustering of Single-Cell Sequencing and Fluorescence In Situ Hybridization Data for<br>Reconstructing Clonal Heterogeneity in Cancers. Journal of Computational Biology, 2021, 28, 1035-1051. | 1.6 | 2         |
| 15 | Bile acid-induced "Minority MOMP―promotes esophageal carcinogenesis while maintaining apoptotic<br>resistance via Mcl-1. Oncogene, 2020, 39, 877-890.                                                | 5.9 | 20        |
| 16 | Characteristics of Breast Ducts in Normal-Risk and High-risk Women and Their Relationship to Ductal<br>Cytologic Atypia. Cancer Prevention Research, 2020, 13, 1027-1036.                            | 1.5 | 2         |
| 17 | Newly established gastrointestinal cancer cell lines retain the genomic and immunophenotypic landscape of their parental cancers. Scientific Reports, 2020, 10, 17895.                               | 3.3 | 5         |
| 18 | High Levels of Chromosomal Copy Number Alterations and TP53 Mutations Correlate with Poor<br>Outcome in Younger Breast Cancer Patients. American Journal of Pathology, 2020, 190, 1643-1656.         | 3.8 | 10        |

| #  | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Tetraploidy-Associated Genetic Heterogeneity Confers Chemo-Radiotherapy Resistance to Colorectal<br>Cancer Cells. Cancers, 2020, 12, 1118.                                                                                                         | 3.7  | 13        |
| 20 | Genome Instability Profiles Predict Disease Outcome in a Cohort of 4,003 Patients with Breast Cancer.<br>Clinical Cancer Research, 2020, 26, 4606-4615.                                                                                            | 7.0  | 9         |
| 21 | Novel renal medullary carcinoma cell lines, <scp>UOK353</scp> and <scp>UOK360</scp> , provide preclinical tools to identify new therapeutic treatments. Genes Chromosomes and Cancer, 2020, 59, 472-483.                                           | 2.8  | 7         |
| 22 | Single-Cell–Derived Primary Rectal Carcinoma Cell Lines Reflect Intratumor Heterogeneity Associated with Treatment Response. Clinical Cancer Research, 2020, 26, 3468-3480.                                                                        | 7.0  | 9         |
| 23 | Suppressing proteasome mediated processing of topoisomerase II DNA-protein complexes preserves genome integrity. ELife, 2020, 9, .                                                                                                                 | 6.0  | 26        |
| 24 | The landscape of genomic copy number alterations in colorectal cancer and their consequences on gene expression levels and disease outcome. Molecular Aspects of Medicine, 2019, 69, 48-61.                                                        | 6.4  | 40        |
| 25 | Genomeâ€wide DNA methylation analysis of colorectal adenomas with and without recurrence reveals<br>an association between cytosineâ€phosphateâ€guanine methylation and histological subtypes. Genes<br>Chromosomes and Cancer, 2019, 58, 783-797. | 2.8  | 26        |
| 26 | Induced Chromosomal Aneuploidy Results in Global and Consistent Deregulation of the Transcriptome of Cancer Cells. Neoplasia, 2019, 21, 721-729.                                                                                                   | 5.3  | 19        |
| 27 | Single Chromosome Aneuploidy Induces Genome-Wide Perturbation of Nuclear Organization and Gene Expression. Neoplasia, 2019, 21, 401-412.                                                                                                           | 5.3  | 19        |
| 28 | Singleâ€cell genetic analysis of clonal dynamics in colorectal adenomas indicates <i>CDX2</i> gain as a predictor of recurrence. International Journal of Cancer, 2019, 144, 1561-1573.                                                            | 5.1  | 15        |
| 29 | Quantitative analysis of somatically acquired and constitutive uniparental disomy in gastrointestinal cancers. International Journal of Cancer, 2019, 144, 513-524.                                                                                | 5.1  | 6         |
| 30 | Transformation of Accessible Chromatin and 3D Nucleome Underlies Lineage Commitment of Early T<br>Cells. Immunity, 2018, 48, 227-242.e8.                                                                                                           | 14.3 | 188       |
| 31 | HiCTMap: Detection and analysis of chromosome territory structure and position by high-throughput imaging. Methods, 2018, 142, 30-38.                                                                                                              | 3.8  | 12        |
| 32 | Trichostatin A preferentially reverses the upregulation of geneâ€expression levels induced by gain of chromosome 7 in colorectal cancer cell lines. Genes Chromosomes and Cancer, 2018, 57, 35-41.                                                 | 2.8  | 4         |
| 33 | Aneuploidy, <i>TP53</i> mutation, and amplification of <i>MYC</i> correlate with increased intratumor heterogeneity and poor prognosis of breast cancer patients. Genes Chromosomes and Cancer, 2018, 57, 165-175.                                 | 2.8  | 27        |
| 34 | Colorectal cancer susceptibility loci as predictive markers of rectal cancer prognosis after surgery.<br>Genes Chromosomes and Cancer, 2018, 57, 140-149.                                                                                          | 2.8  | 81        |
| 35 | Long-term treatment with the PARP inhibitor niraparib does not increase the mutation load in cell line models and tumour xenografts. British Journal of Cancer, 2018, 119, 1392-1400.                                                              | 6.4  | 19        |
| 36 | The evolution of single cell-derived colorectal cancer cell lines is dominated by the continued selection of tumor-specific genomic imbalances, despite random chromosomal instability. Carcinogenesis, 2018, 39, 993-1005.                        | 2.8  | 20        |

| #  | Article                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A Muscle-Specific Enhancer RNA Mediates Cohesin Recruitment and Regulates Transcription In trans.<br>Molecular Cell, 2018, 71, 129-141.e8.                                        | 9.7  | 126       |
| 38 | Dynamics of Genome Alterations in Crohn's Disease–Associated Colorectal Carcinogenesis. Clinical<br>Cancer Research, 2018, 24, 4997-5011.                                         | 7.0  | 22        |
| 39 | Sex-chromosome dosage effects on gene expression in humans. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7398-7403.                | 7.1  | 139       |
| 40 | Nearâ€ŧetraploid cancer cells show chromosome instability triggered by replication stress and exhibit<br>enhanced invasiveness. FASEB Journal, 2018, 32, 3502-3517.               | 0.5  | 50        |
| 41 | Trac-looping measures genome structure and chromatin accessibility. Nature Methods, 2018, 15, 741-747.                                                                            | 19.0 | 74        |
| 42 | Effects of human sex chromosome dosage on spatial chromosome organization. Molecular Biology of the Cell, 2018, 29, 2458-2469.                                                    | 2.1  | 17        |
| 43 | Nucleome Analysis Reveals Structure–Function Relationships for Colon Cancer. Molecular Cancer<br>Research, 2017, 15, 821-830.                                                     | 3.4  | 31        |
| 44 | <i>HLJ1</i> ( <i>DNAJB4</i> ) Gene Is a Novel Biomarker Candidate in Breast Cancer. OMICS A Journal of<br>Integrative Biology, 2017, 21, 257-265.                                 | 2.0  | 20        |
| 45 | Transcription-dependent radial distribution of TCF7L2 regulated genes in chromosome territories.<br>Chromosoma, 2017, 126, 655-667.                                               | 2.2  | 6         |
| 46 | ASXL3 Is a Novel Pluripotency Factor in Human Respiratory Epithelial Cells and a Potential Therapeutic<br>Target in Small Cell Lung Cancer. Cancer Research, 2017, 77, 6267-6281. | 0.9  | 20        |
| 47 | Microscopy and Image Analysis. Current Protocols in Human Genetics, 2017, 94, 4.4.1-4.4.89.                                                                                       | 3.5  | 19        |
| 48 | Genomic and metabolic characterization of a chromophobe renal cell carcinoma cell line model (UOK276). Genes Chromosomes and Cancer, 2017, 56, 719-729.                           | 2.8  | 14        |
| 49 | The 4D Nucleome. Methods, 2017, 123, 1-2.                                                                                                                                         | 3.8  | 15        |
| 50 | Chemoradiotherapy Resistance in Colorectal Cancer Cells is Mediated by Wnt/β-catenin Signaling.<br>Molecular Cancer Research, 2017, 15, 1481-1490.                                | 3.4  | 105       |
| 51 | Cancer Cytogenetics. , 2017, , 65-82.                                                                                                                                             |      | 0         |
| 52 | Novel mouse model recapitulates genome and transcriptome alterations in human colorectal carcinomas. Genes Chromosomes and Cancer, 2017, 56, 199-213.                             | 2.8  | 0         |
| 53 | Array comparative genomic hybridization of 18 pancreatic ductal adenocarcinomas and their autologous metastases. BMC Research Notes, 2017, 10, 560.                               | 1.4  | 8         |
| 54 | Novel near-diploid ovarian cancer cell line derived from a highly aneuploid metastatic ovarian tumor.<br>PLoS ONE, 2017, 12, e0182610.                                            | 2.5  | 2         |

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A Novel MIF Signaling Pathway Drives the Malignant Character of Pancreatic Cancer by Targeting NR3C2. Cancer Research, 2016, 76, 3838-3850.                                                                                                    | 0.9 | 212       |
| 56 | Phylogenetic analysis of multiple FISH markers in oral tongue squamous cell carcinoma suggests that<br>a diverse distribution of copy number changes is associated with poor prognosis. International<br>Journal of Cancer, 2016, 138, 98-109. | 5.1 | 16        |
| 57 | FISHtrees 3.0: Tumor Phylogenetics Using a Ploidy Probe. PLoS ONE, 2016, 11, e0158569.                                                                                                                                                         | 2.5 | 13        |
| 58 | Targeting colorectal cancer (stem-like) cells using LGR5 directed antibody drug conjugates. Annals of<br>Translational Medicine, 2016, 4, 508-508.                                                                                             | 1.7 | 6         |
| 59 | ATM deficiency promotes development of murine B-cell lymphomas that resemble diffuse large B-cell lymphoma in humans. Blood, 2015, 126, 2291-2301.                                                                                             | 1.4 | 13        |
| 60 | An Improved Breast Epithelial Sampling Method for Molecular Profiling and Biomarker Analysis in<br>Women at Risk for Breast Cancer. Breast Cancer: Basic and Clinical Research, 2015, 9, BCBCR.S23577.                                         | 1.1 | 7         |
| 61 | Quantitative analysis of chromatin interaction changes upon a 4.3 Mb deletion at mouse 4E2. BMC Genomics, 2015, 16, 982.                                                                                                                       | 2.8 | 2         |
| 62 | Inferring models of multiscale copy number evolution for single-tumor phylogenetics.<br>Bioinformatics, 2015, 31, i258-i267.                                                                                                                   | 4.1 | 28        |
| 63 | The role of lamin B1 for the maintenance of nuclear structure and function. Nucleus, 2015, 6, 8-14.                                                                                                                                            | 2.2 | 57        |
| 64 | Functional organization of the human 4D Nucleome. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8002-8007.                                                                                       | 7.1 | 102       |
| 65 | CENP-A nucleosomes localize to transcription factor hotspots and subtelomeric sites in human cancer cells. Epigenetics and Chromatin, 2015, 8, 2.                                                                                              | 3.9 | 110       |
| 66 | Patterns of somatic uniparental disomy identify novel tumor suppressor genes in colorectal cancer.<br>Carcinogenesis, 2015, 36, 1103-1110.                                                                                                     | 2.8 | 18        |
| 67 | Genetic Instability and Disease Prognostication. Recent Results in Cancer Research, 2015, 200, 81-94.                                                                                                                                          | 1.8 | 4         |
| 68 | Chromosome mis-segregation and cytokinesis failure in trisomic human cells. ELife, 2015, 4, .                                                                                                                                                  | 6.0 | 87        |
| 69 | Algorithms to Model Single Gene, Single Chromosome, and Whole Genome Copy Number Changes<br>Jointly in Tumor Phylogenetics. PLoS Computational Biology, 2014, 10, e1003740.                                                                    | 3.2 | 46        |
| 70 | Single-Cell Genetic Analysis Reveals Insights into Clonal Development of Prostate Cancers and<br>Indicates Loss of PTEN as a Marker of Poor Prognosis. American Journal of Pathology, 2014, 184,<br>2671-2686.                                 | 3.8 | 29        |
| 71 | STAT3 inhibition sensitizes colorectal cancer to chemoradiotherapy <i>in vitro</i> and <i>in vivo</i> .<br>International Journal of Cancer, 2014, 134, 997-1007.                                                                               | 5.1 | 111       |
| 72 | LGR5 positivity defines stem-like cells in colorectal cancer. Carcinogenesis, 2014, 35, 849-858.                                                                                                                                               | 2.8 | 134       |

| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Transcriptome profiling of LGR5 positive colorectal cancer cells. Genomics Data, 2014, 2, 212-215.                                                                                                                                                       | 1.3  | 9         |
| 74 | Loss of lamin B1 results in prolongation of S phase and decondensation of chromosome territories.<br>FASEB Journal, 2014, 28, 3423-3434.                                                                                                                 | 0.5  | 53        |
| 75 | Molecular patterns in the evolution of serrated lesion of the colorectum. International Journal of Cancer, 2013, 132, 1800-1810.                                                                                                                         | 5.1  | 30        |
| 76 | Intratumor Heterogeneity: Finding the Needle in a Haystack for Cancer Treatment. Gastroenterology, 2013, 145, 242-244.                                                                                                                                   | 1.3  | 0         |
| 77 | Genetic Amplification of the NOTCH Modulator LNX2 Upregulates the WNT/β-Catenin Pathway in Colorectal Cancer. Cancer Research, 2013, 73, 2003-2013.                                                                                                      | 0.9  | 68        |
| 78 | Phylogenetic analysis of multiprobe fluorescence in situ hybridization data from tumor cell populations. Bioinformatics, 2013, 29, i189-i198.                                                                                                            | 4.1  | 40        |
| 79 | Aneuploidy, oncogene amplification and epithelial to mesenchymal transition define spontaneous transformation of murine epithelial cells. Carcinogenesis, 2013, 34, 1929-1939.                                                                           | 2.8  | 11        |
| 80 | Chromothripsis and Focal Copy Number Alterations Determine Poor Outcome in Malignant Melanoma.<br>Cancer Research, 2013, 73, 1454-1460.                                                                                                                  | 0.9  | 86        |
| 81 | Chromosomal Aneuploidy Affects the Global Proteome Equilibrium of Colorectal Cancer Cells.<br>Analytical Cellular Pathology, 2013, 36, 149-161.                                                                                                          | 1.4  | 17        |
| 82 | CKAP2 Ensures Chromosomal Stability by Maintaining the Integrity of Microtubule Nucleation Sites.<br>PLoS ONE, 2013, 8, e64575.                                                                                                                          | 2.5  | 17        |
| 83 | The Rectal Cancer microRNAome – microRNA Expression in Rectal Cancer and Matched Normal<br>Mucosa. Clinical Cancer Research, 2012, 18, 4919-4930.                                                                                                        | 7.0  | 174       |
| 84 | A recurrent fusion gene in high-grade endometrial stromal sarcoma: a new tool for diagnosis and therapy?. Genome Medicine, 2012, 4, 20.                                                                                                                  | 8.2  | 6         |
| 85 | The consequences of chromosomal aneuploidy on the transcriptome of cancer cells. Biochimica Et<br>Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 784-793.                                                                                     | 1.9  | 64        |
| 86 | Single-Cell Genetic Analysis of Ductal Carcinoma in Situ and Invasive Breast Cancer Reveals Enormous<br>Tumor Heterogeneity yet Conserved Genomic Imbalances and Gain of MYC during Progression.<br>American Journal of Pathology, 2012, 181, 1807-1822. | 3.8  | 104       |
| 87 | Rapid re-expression of CD133 protein in colorectal cancer cell lines in vitro and in vivo. Laboratory<br>Investigation, 2012, 92, 1607-1622.                                                                                                             | 3.7  | 15        |
| 88 | Systems-wide RNAi analysis of CASP8AP2/FLASH shows transcriptional deregulation of the replication-dependent histone genes and extensive effects on the transcriptome of colorectal cancer cells. Molecular Cancer, 2012, 11, 1.                         | 19.2 | 42        |
| 89 | Spontaneous transformation of murine epithelial cells requires the early acquisition of specific chromosomal aneuploidies and genomic imbalances. Genes Chromosomes and Cancer, 2012, 51, 353-374.                                                       | 2.8  | 25        |
| 90 | A new whole genome amplification method for studying clonal evolution patterns in malignant colorectal polyps. Genes Chromosomes and Cancer, 2012, 51, 490-500.                                                                                          | 2.8  | 24        |

| #   | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Silencing of the Wnt transcription factor TCF4 sensitizes colorectal cancer cells to (chemo-) radiotherapy. Carcinogenesis, 2011, 32, 1824-1831.                                                                                                            | 2.8 | 85        |
| 92  | Genome and Transcriptome Profiles of CD133-Positive Colorectal Cancer Cells. American Journal of Pathology, 2011, 178, 1478-1488.                                                                                                                           | 3.8 | 20        |
| 93  | HDAC2 and TXNL1 distinguish aneuploid from diploid colorectal cancers. Cellular and Molecular Life Sciences, 2011, 68, 3261-3274.                                                                                                                           | 5.4 | 17        |
| 94  | Automated analysis of protein expression and gene amplification within the same cells of paraffin-embedded tumour tissue. Cellular Oncology (Dordrecht), 2011, 34, 337-342.                                                                                 | 4.4 | 6         |
| 95  | A genomic strategy for the functional validation of colorectal cancer genes identifies potential therapeutic targets. International Journal of Cancer, 2011, 128, 1069-1079.                                                                                | 5.1 | 41        |
| 96  | Genomic instability and oncogene amplifications in colorectal adenomas predict recurrence and synchronous carcinoma. Modern Pathology, 2011, 24, 542-555.                                                                                                   | 5.5 | 22        |
| 97  | Definitive molecular cytogenetic characterization of 15 colorectal cancer cell lines. Genes<br>Chromosomes and Cancer, 2010, 49, 204-223.                                                                                                                   | 2.8 | 68        |
| 98  | UOK 262 cell line, fumarate hydratase deficient (FHâ^'/FHâ^') hereditary leiomyomatosis renal cell<br>carcinoma: in vitro and in vivo model of an aberrant energy metabolic pathway in human cancer.<br>Cancer Genetics and Cytogenetics, 2010, 196, 45-55. | 1.0 | 131       |
| 99  | Mutated <i>KRAS</i> results in overexpression of <i>DUSP4</i> , a MAPâ€kinase phosphatase, and <i>SMYD3</i> , a histone methyltransferase, in rectal carcinomas. Genes Chromosomes and Cancer, 2010, 49, 1024-1034.                                         | 2.8 | 169       |
| 100 | A Gene Expression Signature for Chemoradiosensitivity of Colorectal Cancer Cells. International<br>Journal of Radiation Oncology Biology Physics, 2010, 78, 1184-1192.                                                                                      | 0.8 | 82        |
| 101 | A 12-Gene Genomic Instability Signature Predicts Clinical Outcomes in Multiple Cancer Types.<br>International Journal of Biological Markers, 2010, 25, 219-228.                                                                                             | 1.8 | 45        |
| 102 | KRAS and BRAF mutations in patients with rectal cancer treated with preoperative chemoradiotherapy.<br>Radiotherapy and Oncology, 2010, 94, 76-81.                                                                                                          | 0.6 | 90        |
| 103 | CD133 expression is not selective for tumor-initiating or radioresistant cell populations in the CRC cell line HCT-116. Radiotherapy and Oncology, 2010, 94, 375-383.                                                                                       | 0.6 | 32        |
| 104 | Chromosomal instability determines taxane response. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8671-8676.                                                                                                  | 7.1 | 244       |
| 105 | Evaluating annotations of an Agilent expression chip suggests that many features cannot be interpreted. BMC Genomics, 2009, 10, 566.                                                                                                                        | 2.8 | 8         |
| 106 | The gene expression signature of genomic instability in breast cancer is an independent predictor of clinical outcome. International Journal of Cancer, 2009, 124, 1552-1564.                                                                               | 5.1 | 112       |
| 107 | Homage to Theodor Boveri (1862–1915): Boveri's theory of cancer as a disease of the chromosomes, and<br>the landscape of genomic imbalances in human carcinomas. Environmental and Molecular<br>Mutagenesis, 2009, 50, 593-601.                             | 2.2 | 39        |
| 108 | Nucleation capacity and presence of centrioles define a distinct category of centrosome<br>abnormalities that induces multipolar mitoses in cancer cells. Environmental and Molecular<br>Mutagenesis, 2009, 50, 672-696.                                    | 2.2 | 13        |

| #   | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Integrative genomics reveals mechanisms of copy number alterations responsible for transcriptional deregulation in colorectal cancer. Genes Chromosomes and Cancer, 2009, 48, 1002-1017.                                              | 2.8  | 75        |
| 110 | CD133 expression is not selective for tumor-initiating or radioresistant cell populations in the CRC cell lines HCT-116. Radiotherapy and Oncology, 2009, 92, 353-361.                                                                | 0.6  | 49        |
| 111 | Fluorescence in Situ Hybridization Markers for Prediction of Cervical Lymph Node Metastases.<br>American Journal of Pathology, 2009, 175, 2637-2645.                                                                                  | 3.8  | 20        |
| 112 | Telomere Shortening Promotes Chromosomal Instability and Predicts Malignant Clonal Evolution in Aplastic Anemia Blood, 2009, 114, 3208-3208.                                                                                          | 1.4  | 7         |
| 113 | Position of human chromosomes is conserved in mouse nuclei indicating a species-independent mechanism for maintaining genome organization. Chromosoma, 2008, 117, 499-509.                                                            | 2.2  | 20        |
| 114 | The UOK 257 cell line: a novel model for studies of the human Birt–Hogg–Dubé gene pathway. Cancer<br>Genetics and Cytogenetics, 2008, 180, 100-109.                                                                                   | 1.0  | 55        |
| 115 | Chromosomal Breakpoints in Primary Colon Cancer Cluster at Sites of Structural Variants in the Genome. Cancer Research, 2008, 68, 1284-1295.                                                                                          | 0.9  | 71        |
| 116 | Gene Expression Profiling Reveals a Massive, Aneuploidy-Dependent Transcriptional Deregulation and<br>Distinct Differences between Lymph Node–Negative and Lymph Node–Positive Colon Carcinomas.<br>Cancer Research, 2007, 67, 41-56. | 0.9  | 108       |
| 117 | Editorial. Drug Discovery Today Disease Mechanisms, 2007, 4, 259-260.                                                                                                                                                                 | 0.8  | 1         |
| 118 | Stage-specific alterations of the genome, transcriptome, and proteome during colorectal carcinogenesis. Genes Chromosomes and Cancer, 2007, 46, 10-26.                                                                                | 2.8  | 91        |
| 119 | Artificially Introduced Aneuploid Chromosomes Assume a Conserved Position in Colon Cancer Cells.<br>PLoS ONE, 2007, 2, e199.                                                                                                          | 2.5  | 21        |
| 120 | Spectral karyotyping analysis of human and mouse chromosomes. Nature Protocols, 2006, 1, 3129-3142.                                                                                                                                   | 12.0 | 67        |
| 121 | Combined breast ductal lavage and ductal endoscopy for the evaluation of the high-risk breast: A<br>feasibility study. Journal of Surgical Oncology, 2006, 94, 555-564.                                                               | 1.7  | 17        |
| 122 | Aneuploidy-Dependent Massive Deregulation of the Cellular Transcriptome and Apparent Divergence<br>of the Wnt/l²-catenin Signaling Pathway in Human Rectal Carcinomas. Cancer Research, 2006, 66, 267-282.                            | 0.9  | 53        |
| 123 | Molecular Cytogenetics: Genomic Imbalances in Colorectal Cancer and their Clinical Impact.<br>Analytical Cellular Pathology, 2006, 28, 71-84.                                                                                         | 1.4  | 34        |
| 124 | The interactive online SKY/Mâ€FISH & CGH Database and the Entrez Cancer Chromosomes search<br>database: Linkage of chromosomal aberrations with the genome sequence. Genes Chromosomes and<br>Cancer, 2005, 44, 52-64.                | 2.8  | 86        |
| 125 | Effectiveness of Gene Expression Profiling for Response Prediction of Rectal Adenocarcinomas to Preoperative Chemoradiotherapy. Journal of Clinical Oncology, 2005, 23, 1826-1838.                                                    | 1.6  | 325       |
| 126 | Genomic Amplification of the Human Telomerase Gene (TERC) in Pap Smears Predicts the Development of Cervical Cancer. American Journal of Pathology, 2005, 166, 1229-1238.                                                             | 3.8  | 147       |

| #   | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Molecular Cytogenetics of Mouse Models of Breast Cancer. Breast Disease, 2004, 19, 59-67.                                                                                                                                                              | 0.8  | 13        |
| 128 | Chromosome Transfer Induced Aneuploidy Results in Complex Dysregulation of the Cellular Transcriptome in Immortalized and Cancer Cells. Cancer Research, 2004, 64, 6941-6949.                                                                          | 0.9  | 160       |
| 129 | E6 and E7 Oncoproteins Induce Distinct Patterns of Chromosomal Aneuploidy in Skin Tumors from Transgenic Mice. Cancer Research, 2004, 64, 538-546.                                                                                                     | 0.9  | 50        |
| 130 | Loss of CCAAT/enhancer binding protein δ promotes chromosomal instability. Oncogene, 2004, 23,<br>1549-1557.                                                                                                                                           | 5.9  | 67        |
| 131 | Carcinogen-induced colon tumors in mice are chromosomally stable and are characterized by low-level microsatellite instability. Oncogene, 2004, 23, 3813-3821.                                                                                         | 5.9  | 42        |
| 132 | Advanced molecular cytogenetics in human and mouse. Expert Review of Molecular Diagnostics, 2004,<br>4, 663-676.                                                                                                                                       | 3.1  | 19        |
| 133 | BCR/ABL Expression Increases the Formation of Chromosomal Translocations after DNA Damage<br>Blood, 2004, 104, 713-713.                                                                                                                                | 1.4  | 1         |
| 134 | Pronounced chromosomal instability and multiple gene amplifications characterize ulcerative colitis–associated colorectal carcinomas. Cancer Genetics and Cytogenetics, 2003, 147, 9-17.                                                               | 1.0  | 20        |
| 135 | Detection of Genomic Amplification of the Human Telomerase Gene (TERC) in Cytologic Specimens as a<br>Genetic Test for the Diagnosis of Cervical Dysplasia. American Journal of Pathology, 2003, 163,<br>1405-1416.                                    | 3.8  | 117       |
| 136 | H2AX Haploinsufficiency Modifies Genomic Stability and Tumor Susceptibility. Cell, 2003, 114, 371-383.                                                                                                                                                 | 28.9 | 523       |
| 137 | DNA Amplifications and Aneuploidy, High Proliferative Activity and Impaired Cell Cycle Control<br>Characterize Breast Carcinomas with Poor Prognosis. Analytical Cellular Pathology, 2003, 25, 103-114.                                                | 2.1  | 30        |
| 138 | The Septin 9 (MSF) gene is amplified and overexpressed in mouse mammary gland adenocarcinomas and human breast cancer cell lines. Cancer Research, 2003, 63, 2179-87.                                                                                  | 0.9  | 118       |
| 139 | Centrosome abnormalities, recurring deletions of chromosome 4, and genomic amplification of HER2/neu define mouse mammary gland adenocarcinomas induced by mutant HER2/neu. Oncogene, 2002, 21, 890-898.                                               | 5.9  | 94        |
| 140 | Mammary tumors in mice conditionally mutant for Brca1 exhibit gross genomic instability and centrosome amplification yet display a recurring distribution of genomic imbalances that is similar to human breast cancer. Oncogene, 2002, 21, 5097-5107. | 5.9  | 140       |
| 141 | Silence of chromosomal amplifications in colon cancer. Cancer Research, 2002, 62, 1134-8.                                                                                                                                                              | 0.9  | 119       |
| 142 | Detection of chromosomal aneuploidies and gene copy number changes in fine needle aspirates is a specific, sensitive, and objective genetic test for the diagnosis of breast cancer. Cancer Research, 2002, 62, 2365-9.                                | 0.9  | 28        |
| 143 | Jumping translocations are common in solid tumor cell lines and result in recurrent fusions of whole chromosome arms. Genes Chromosomes and Cancer, 2001, 30, 349-363.                                                                                 | 2.8  | 74        |
| 144 | Molecular cytogenetic characterization of early and late renal cell carcinomas in Von Hippel-Lindau<br>disease. Genes Chromosomes and Cancer, 2001, 31, 1-9.                                                                                           | 2.8  | 27        |

| #   | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Translocation remodeling in the primary BALB/c plasmacytoma TEPC 3610. Genes Chromosomes and Cancer, 2001, 30, 283-291.                                                                                                            | 2.8  | 9         |
| 146 | AID is required to initiate Nbs1/ $\hat{I}^3$ -H2AX focus formation and mutations at sites of class switching. Nature, 2001, 414, 660-665.                                                                                         | 27.8 | 459       |
| 147 | A high-resolution map of human chromosome 12. Nature, 2001, 409, 945-946.                                                                                                                                                          | 27.8 | 29        |
| 148 | Amplification of 4q21-q22 and theMXR gene in independently derived mitoxantrone-resistant cell lines. , 2000, 27, 110-116.                                                                                                         |      | 73        |
| 149 | Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations. Genes Chromosomes and Cancer, 2000, 27, 183-190. | 2.8  | 230       |
| 150 | Chromosomes 1 and 5 harbor plasmacytoma progressor genes in mice. Genes Chromosomes and Cancer, 2000, 29, 70-74.                                                                                                                   | 2.8  | 12        |
| 151 | A systematic, high-resolution linkage of the cytogenetic and physical maps of the human genome.<br>Nature Genetics, 2000, 24, 339-340.                                                                                             | 21.4 | 52        |
| 152 | DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature, 2000, 404, 510-514.                                                                                                               | 27.8 | 514       |
| 153 | Abnormal rearrangement within the α/δT-cell receptor locus in lymphomas from Atm-deficient mice.<br>Blood, 2000, 96, 1940-1946.                                                                                                    | 1.4  | 151       |
| 154 | The role of cytokines in immunological tolerance: potential for therapy. Expert Reviews in Molecular<br>Medicine, 2000, 2, 1-14.                                                                                                   | 3.9  | 38        |
| 155 | Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations. , 2000, 27, 183.                                 |      | 2         |
| 156 | Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations. Genes Chromosomes and Cancer, 2000, 27, 183-190. | 2.8  | 4         |
| 157 | Abnormal rearrangement within the α/δT-cell receptor locus in lymphomas from Atm-deficient mice.<br>Blood, 2000, 96, 1940-1946.                                                                                                    | 1.4  | 11        |
| 158 | Interphase Cytogenetics: At the Interface of Genetics and Morphology. Analytical Cellular Pathology, 1999, 19, 3-6.                                                                                                                | 2.1  | 9         |
| 159 | Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nature Genetics, 1999, 22, 37-43.                                                                          | 21.4 | 711       |
| 160 | Genomic changes defining the genesis, progression, and malignancy potential in solid human tumors:<br>A phenotype/genotype correlation. Genes Chromosomes and Cancer, 1999, 25, 195-204.                                           | 2.8  | 238       |
| 161 | A recurring pattern of chromosomal aberrations in mammary gland tumors of MMTV-cmyc transgenic mice. Genes Chromosomes and Cancer, 1999, 25, 251-260.                                                                              | 2.8  | 75        |
| 162 | Centrosome Amplification and a Defective G2–M Cell Cycle Checkpoint Induce Genetic Instability in<br>BRCA1 Exon 11 Isoform–Deficient Cells. Molecular Cell, 1999, 3, 389-395.                                                      | 9.7  | 761       |

| #   | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Amplification of Ki-ras and elevation of MAP kinase activity during mammary tumor progression in C3(1)/SV40 Tag transgenic mice. Oncogene, 1998, 17, 2403-2411.                                           | 5.9  | 41        |
| 164 | Frequent Dysregulation of the c-maf Proto-Oncogene at 16q23 by Translocation to an Ig Locus in<br>Multiple Myeloma. Blood, 1998, 91, 4457-4463.                                                           | 1.4  | 101       |
| 165 | Advanced-stage cervical carcinomas are defined by a recurrent pattern of chromosomal aberrations revealing high genetic instability and a consistent gain of chromosome arm 3q. , 1997, 19, 233-240.      |      | 228       |
| 166 | Detection of a germline mutation and somatic homozygous loss of the von Hippel-Lindau<br>tumor-suppressor gene in a family with a de novo mutation. Human Genetics, 1996, 97, 770-776.                    | 3.8  | 23        |
| 167 | Recurrent gain of chromosome arm 7q in low-grade astrocytic tumors studied by comparative genomic hybridization. Genes Chromosomes and Cancer, 1996, 15, 199-205.                                         | 2.8  | 80        |
| 168 | Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes Chromosomes and Cancer, 1996, 15, 234-245.                    | 2.8  | 339       |
| 169 | Multicolour spectral karyotyping of mouse chromosomes. Nature Genetics, 1996, 14, 312-315.                                                                                                                | 21.4 | 307       |
| 170 | Recurrent gain of chromosome arm 7q in low-grade astrocytic tumors studied by comparative genomic hybridization. , 1996, 15, 199.                                                                         |      | 1         |
| 171 | Detection of a germline mutation and somatic homozygous loss of the von Hippel-Lindau<br>tumor-suppressor gene in a family with a de novo mutation. Human Genetics, 1996, 97, 770-776.                    | 3.8  | 1         |
| 172 | Molecular cytogenetic analysis of formalin-fixed, paraffin-embedded solid tumors by comparative<br>genomic hybridization after universal DNA-amplification. Human Molecular Genetics, 1993, 2, 1907-1914. | 2.9  | 180       |
| 173 | Specific metaphase and interphase detection of the breakpoint region in 8q24 of burkitt lymphoma calls by tripleafeolor fluorescence in situ bybridization. Genes Chromosomes and Capeer, 1992, 4, 69-74  | 2.8  | 87        |