
Javier Capilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2761448/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Different virulence levels of the species of Sporothrix in a murine model. Clinical Microbiology and Infection, 2009, 15, 651-655.	6.0	188
2	Scedosporium and Lomentospora: an updated overview of underrated opportunists. Medical Mycology, 2018, 56, S102-S125.	0.7	186
3	HapX-Mediated Iron Homeostasis Is Essential for Rhizosphere Competence and Virulence of the Soilborne Pathogen <i>Fusarium oxysporum</i> Â Â Â. Plant Cell, 2012, 24, 3805-3822.	6.6	138
4	The velvet complex governs mycotoxin production and virulence of <i><scp>F</scp>usarium oxysporum</i> on plant and mammalian hosts. Molecular Microbiology, 2013, 87, 49-65.	2.5	132
5	Fusaric acid contributes to virulence of <i>Fusarium oxysporum</i> on plant and mammalian hosts. Molecular Plant Pathology, 2018, 19, 440-453.	4.2	105
6	Azole resistance mechanisms in Aspergillus: update and recent advances. International Journal of Antimicrobial Agents, 2020, 55, 105807.	2.5	102
7	Sterol Biosynthesis and Azole Tolerance Is Governed by the Opposing Actions of SrbA and the CCAAT Binding Complex. PLoS Pathogens, 2016, 12, e1005775.	4.7	95
8	Oral Particle Uptake and Organ Targeting Drives the Activity of Amphotericin B Nanoparticles. Molecular Pharmaceutics, 2015, 12, 420-431.	4.6	91
9	Animal models: an important tool in mycology. Medical Mycology, 2007, 45, 657-684.	0.7	77
10	Efficacy of Voriconazole in Treatment of Systemic Scedosporiosis in Neutropenic Mice. Antimicrobial Agents and Chemotherapy, 2003, 47, 3976-3978.	3.2	53
11	Saccharomyces cerevisiae as a vaccine against coccidioidomycosis. Vaccine, 2009, 27, 3662-3668.	3.8	53
12	RNAi-Based Functional Genomics Identifies New Virulence Determinants in Mucormycosis. PLoS Pathogens, 2017, 13, e1006150.	4.7	53
13	In vitro interactions of licensed and novel antifungal drugs against Fusarium spp. Diagnostic Microbiology and Infectious Disease, 2004, 48, 69-71.	1.8	50
14	Liposomal amphotericin B and granulocyte colony-stimulating factor therapy in a murine model of invasive infection by Scedosporium prolificans. Journal of Antimicrobial Chemotherapy, 2002, 49, 525-529.	3.0	47
15	Components of a new gene family of ferroxidases involved in virulence are functionally specialized in fungal dimorphism. Scientific Reports, 2018, 8, 7660.	3.3	47
16	Efficacy of Albaconazole (UR-9825) in Treatment of Disseminated Scedosporium prolificans Infection in Rabbits. Antimicrobial Agents and Chemotherapy, 2003, 47, 1948-1951.	3.2	46
17	In Vitro Antifungal Activities of the New Triazole UR-9825 against Clinically Important Filamentous Fungi. Antimicrobial Agents and Chemotherapy, 2001, 45, 2635-2637.	3.2	44
18	Interaction of granulocyte colony-stimulating factor and high doses of liposomal amphotericin B in the treatment of systemic murine scedosporiosis. Diagnostic Microbiology and Infectious Disease, 2004, 50, 247-251.	1.8	44

#	Article	IF	CITATIONS
19	Understanding <i>Mucor circinelloides</i> pathogenesis by comparative genomics and phenotypical studies. Virulence, 2018, 9, 707-720.	4.4	44
20	Two Cases of Subcutaneous Infection Due to Phaeoacremonium spp. Journal of Clinical Microbiology, 2003, 41, 1332-1336.	3.9	43
21	In Vitro Interactions of Approved and Novel Drugs against Paecilomyces spp. Antimicrobial Agents and Chemotherapy, 2004, 48, 2727-2729.	3.2	43
22	Molecular Identification andIn VitroResponse to Antifungal Drugs of Clinical Isolates of Exserohilum. Antimicrobial Agents and Chemotherapy, 2012, 56, 4951-4954.	3.2	43
23	In Vitro Activities of New Antifungal Agents against Chaetomium spp. and Inoculum Standardization. Antimicrobial Agents and Chemotherapy, 2003, 47, 3161-3164.	3.2	42
24	In Vitro Antifungal Susceptibilities of Uncommon Basidiomycetous Yeasts. Antimicrobial Agents and Chemotherapy, 2004, 48, 2724-2726.	3.2	38
25	Correlation between In Vitro Susceptibility of Scedosporium apiospermum to Voriconazole and In Vivo Outcome of Scedosporiosis in Guinea Pigs. Antimicrobial Agents and Chemotherapy, 2004, 48, 4009-4011.	3.2	35
26	Saccharomyces as a vaccine against systemic aspergillosis: †the friend of man' a friend again?. Journal of Medical Microbiology, 2011, 60, 1423-1432.	1.8	32
27	Efficacy of Posaconazole in Murine Experimental Sporotrichosis. Antimicrobial Agents and Chemotherapy, 2012, 56, 2273-2277.	3.2	32
28	Efficacy of Liposomal Amphotericin B in Treatment of Systemic Murine Fusariosis. Antimicrobial Agents and Chemotherapy, 2002, 46, 2273-2275.	3.2	31
29	Comparative Efficacies of Lipid-Complexed Amphotericin B and Liposomal Amphotericin B against Coccidioidal Meningitis in Rabbits. Antimicrobial Agents and Chemotherapy, 2009, 53, 1858-1862.	3.2	30
30	Clinical and Laboratory Development of Echinocandin Resistance in Candida glabrata: Molecular Characterization. Frontiers in Microbiology, 2019, 10, 1585.	3.5	30
31	Strongyloides stercolaris infection mimicking a malignant tumour in a non-immunocompromised patient. Diagnosis by bronchoalveolar cytology. Journal of Clinical Pathology, 2005, 58, 420-422.	2.0	27
32	Experimental systemic infection withCryptococcus neoformansvar.grubiiandCryptococcusgattiiin normal and immunodeficient mice. Medical Mycology, 2006, 44, 601-610.	0.7	26
33	Experimental Animal Models of Coccidioidomycosis. Annals of the New York Academy of Sciences, 2007, 1111, 208-224.	3.8	26
34	Modest efficacy of voriconazole against murine infections by <i>Sporothrix schenckii</i> and lack of efficacy against <i>Sporothrix brasiliensis</i> . Mycoses, 2014, 57, 121-124.	4.0	26
35	Unusual morphologies of Cryptococcus spp. in tissue specimens: report of 10 cases. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2010, 52, 145-149.	1.1	25
36	Virulence of Sporothrix luriei in a Murine Model of Disseminated Infection. Mycopathologia, 2012, 173, 245-249.	3.1	25

#	Article	IF	CITATIONS
37	Use of the Sensititre Colorimetric Microdilution Panel for Antifungal Susceptibility Testing of Dermatophytes. Journal of Clinical Microbiology, 2002, 40, 2618-2621.	3.9	24
38	Does a triple combination have better activity than double combinations against multiresistant fungi? Experimental in vitro evaluation. International Journal of Antimicrobial Agents, 2017, 49, 422-426.	2.5	23
39	A novel murine model of cerebral scedosporiosis: lack of efficacy of amphotericin B. Journal of Antimicrobial Chemotherapy, 2004, 54, 1092-1095.	3.0	21
40	Efficacy of amphotericin B lipid complex in a rabbit model of coccidioidal meningitis. Journal of Antimicrobial Chemotherapy, 2007, 60, 673-676.	3.0	21
41	Pithomyces species (Montagnulaceae) from clinical specimens: identification and antifungal susceptibility profiles. Medical Mycology, 2014, 52, 748-757.	0.7	21
42	Usefulness of microchip electrophoresis for the analysis of mitochondrial DNA in forensic and ancient DNA studies. Electrophoresis, 2006, 27, 5101-5109.	2.4	20
43	Role of the <i>Fusarium oxysporum</i> metallothionein Mt1 in resistance to metal toxicity and virulence. Metallomics, 2019, 11, 1230-1240.	2.4	20
44	Production of IL-6, in contrast to other cytokines and chemokines, in macrophage innate immune responses: Effect of serum and fungal (Blastomyces) challenge. Cytokine, 2007, 39, 163-170.	3.2	17
45	Treatment of murine Fusarium verticillioides infection with liposomal amphotericin B plus terbinafine. International Journal of Antimicrobial Agents, 2011, 37, 58-61.	2.5	15
46	Efficacy of intrathecal administration of liposomal amphotericin B combined with voriconazole in a murine model of cryptococcal meningitis. International Journal of Antimicrobial Agents, 2012, 39, 223-227.	2.5	14
47	Voriconazole MICs are predictive for the outcome of experimental disseminated scedosporiosis. Journal of Antimicrobial Chemotherapy, 2017, 72, dkw532.	3.0	14
48	<i>In Vitro</i> and <i>In Vivo</i> Efficacy of Amphotericin B Combined with Posaconazole against Experimental Disseminated Sporotrichosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 5018-5021.	3.2	13
49	Histopathology and antifungal treatment of experimental murine chromoblastomycosis caused by Cladophialophora carrionii. Journal of Antimicrobial Chemotherapy, 2012, 67, 666-670.	3.0	12
50	Evaluation of the Efficacies of Amphotericin B, Posaconazole, Voriconazole, and Anidulafungin in a Murine Disseminated Infection by the Emerging Opportunistic Fungus Sarocladium (Acremonium)kiliense. Antimicrobial Agents and Chemotherapy, 2013, 57, 6265-6269.	3.2	11
51	<i>In Vivo</i> Synergy of Amphotericin B plus Posaconazole in Murine Aspergillosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 296-300.	3.2	11
52	New Insights into the Cyp51 Contribution to Azole Resistance in <i>Aspergillus</i> Section <i>Nigri</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	11
53	Virulence of <i><scp>C</scp>urvularia</i> in a murine model. Mycoses, 2013, 56, 512-515.	4.0	10
54	<i>In Vitro</i> Antifungal Susceptibility of Candida glabrata to Caspofungin and the Presence of <i>FKS</i> Mutations Correlate with Treatment Response in an Immunocompromised Murine Model of Invasive Infection. Antimicrobial Agents and Chemotherapy, 2014, 58, 3646-3649.	3.2	10

#	Article	IF	CITATIONS
55	Virulence and Experimental Treatment of Trichoderma longibrachiatum, a Fungus Refractory to Treatment. Antimicrobial Agents and Chemotherapy, 2016, 60, 5029-5032.	3.2	10
56	Synergistic effect of anidulafungin combined with posaconazole in experimental aspergillosis. Medical Mycology, 2016, 55, myw110.	0.7	10
57	Virulence and Resistance to Antifungal Therapies of Scopulariopsis Species. Antimicrobial Agents and Chemotherapy, 2016, 60, 2063-2068.	3.2	10
58	Antifungal susceptibility of Saccharomyces cerevisiae and therapy in a murine model of disseminated infection. Revista Iberoamericana De Micologia, 2019, 36, 37-40.	0.9	10
59	Iron competition in fungus-plant interactions. Plant Signaling and Behavior, 2013, 8, e23012.	2.4	9
60	Lack of correlation of ECV and outcome in an in vivo murine model of systemic fusariosis. Diagnostic Microbiology and Infectious Disease, 2018, 92, 124-126.	1.8	9
61	Increased Efficacy of Oral Fixed-Dose Combination of Amphotericin B and AHCC® Natural Adjuvant against Aspergillosis. Pharmaceutics, 2019, 11, 456.	4.5	9
62	<i>In Vitro</i> Evaluation of Antifungal Drug Combinations against Sarocladium (Acremonium) kiliense, an Opportunistic Emergent Fungus Resistant to Antifungal Therapies. Antimicrobial Agents and Chemotherapy, 2014, 58, 1259-1260.	3.2	8
63	In vitro pharmacodynamics and in vivo efficacy of fluconazole, amphotericin B and caspofungin in a murine infection by Candida lusitaniae. International Journal of Antimicrobial Agents, 2014, 43, 161-164.	2.5	7
64	Experimental treatment of Curvularia infection. Diagnostic Microbiology and Infectious Disease, 2014, 79, 428-431.	1.8	7
65	Synthesis of the Hydroxamate Siderophore Nα-Methylcoprogen B in Scedosporium apiospermum Is Mediated by sidD Ortholog and Is Required for Virulence. Frontiers in Cellular and Infection Microbiology, 2020, 10, 587909.	3.9	7
66	A Mucoralean White Collar-1 Photoreceptor Controls Virulence by Regulating an Intricate Gene Network during Host Interactions. Microorganisms, 2021, 9, 459.	3.6	7
67	Efficacy of intrathecal liposomal amphotericin B plus oral posaconazole in the treatment of acute meningeal cryptococcosis in a murine model. International Journal of Antimicrobial Agents, 2013, 42, 282-283.	2.5	6
68	Efficacy of Amphotericin B at Suboptimal Dose Combined with Voriconazole in a Murine Model of Aspergillus fumigatus Infection with Poor <i>In Vivo</i> Response to the Azole. Antimicrobial Agents and Chemotherapy, 2013, 57, 4540-4542.	3.2	6
69	Voriconazole and posaconazole therapy for experimental Candida lusitaniae infection. Diagnostic Microbiology and Infectious Disease, 2016, 84, 48-51.	1.8	6
70	Efficacy, Biodistribution, and Nephrotoxicity of Experimental Amphotericin B-Deoxycholate Formulations for Pulmonary Aspergillosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	6
71	Cu transporter protein CrpF protects against Cu-induced toxicity in <i>Fusarium oxysporum</i> . Virulence, 2020, 11, 1108-1121.	4.4	6
72	Analysis of the Contribution of <i>cyp51</i> Genes to Azole Resistance in <i>Aspergillus</i> Section <i>Nigri</i> with the CRISPR-Cas9 Technique. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	6

#	Article	IF	CITATIONS
73	Experimental murine acremoniosis: an emerging opportunistic human infection. Medical Mycology, 2014, 52, 1-7.	0.7	5
74	Virulence and antifungal therapy of murine disseminated infection by Rhodotorula mucilaginosa. Diagnostic Microbiology and Infectious Disease, 2017, 89, 47-51.	1.8	5
75	Evaluation of the correlation of caspofungin MICs and treatment outcome in murine infections by wild type strains of Candida parapsilosis. Diagnostic Microbiology and Infectious Disease, 2013, 77, 41-45.	1.8	4
76	Experimental Therapy with Azoles against Candida guilliermondii. Antimicrobial Agents and Chemotherapy, 2014, 58, 6255-6257.	3.2	4
77	Combination therapy in the treatment of experimental invasive fungal infection by Sarocladium (Acremonium) kiliense. International Journal of Antimicrobial Agents, 2014, 44, 136-139.	2.5	4
78	Experimental efficacy of anidulafungin againstAspergillus terreusspecies complex. Medical Mycology, 2015, 53, 630-635.	0.7	4
79	Antifungal therapies in murine infections by <i>Candida kefyr</i> . Mycoses, 2016, 59, 253-258.	4.0	4
80	Voriconazole minimum inhibitory concentrations are predictive of treatment outcome in experimental murine infections by Candida glabrata. International Journal of Antimicrobial Agents, 2016, 47, 286-288.	2.5	4
81	Therapies against murine Candida guilliermondii infection, relationship between in vitro antifungal pharmacodynamics and outcome. Revista Iberoamericana De Micologia, 2015, 32, 34-39.	0.9	3
82	Efficacy of echinocandins against murine infections by Diutina (Candida) rugosa. Diagnostic Microbiology and Infectious Disease, 2016, 86, 61-65.	1.8	3
83	Combined antifungal therapy against systemic murine infections by rare <i>Cryptococcus</i> species. Mycoses, 2017, 60, 112-117.	4.0	3
84	Identification of Mucor circinelloides antigens recognized by sera from immunocompromised infected mice. Revista Iberoamericana De Micologia, 2020, 37, 81-86.	0.9	3
85	Improvement of the pharmacokinetic/pharmacodynamic relationship in the treatment of invasive aspergillosis with voriconazole. Reduced drug toxicity through novel rapid release formulations. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111119.	5.0	3
86	Efficacy of Posaconazole in a Murine Model of Systemic Infection by Saprochaete capitata. Antimicrobial Agents and Chemotherapy, 2015, 59, 7477-7482.	3.2	2
87	Expression of ERG11 and efflux pump genes CDR1, CDR2 and SNQ2 in voriconazole susceptible and resistant Candida glabrata strains. Medical Mycology, 2020, 58, 30-38.	0.7	2
88	ERG11 Polymorphism in Voriconazole-Resistant Candida tropicalis: Weak Role of ERG11 Expression, Ergosterol Content, and Membrane Permeability. Antimicrobial Agents and Chemotherapy, 2020, 65, .	3.2	1
89	Antifungal and Antiparasitic Drug Delivery. Pharmaceutics, 2020, 12, 324.	4.5	1