Jeremy D Allison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2761281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of the chemical ecology of the Cerambycidae (Coleoptera). Chemoecology, 2004, 14, 123.	1.1	252
2	Kairomonal response by four Monochamus species (Coleoptera: Cerambycidae) to bark beetle pheromones. Journal of Chemical Ecology, 2001, 27, 633-646.	1.8	102
3	Learned and naÃ ⁻ ve natural enemy responses and the interpretation of volatile organic compounds as cues or signals. New Phytologist, 2009, 184, 768-782.	7.3	95
4	Comparative efficacy of five types of trap for woodborers in the Cerambycidae, Buprestidae and Siricidae. Agricultural and Forest Entomology, 2001, 3, 113-120.	1.3	90
5	Pheromone Communication in Moths. , 2016, , .		82
6	Response of the Woodborers <1>Monochamus carolinensis 1 and <1>Monochamus titillator 1 (Coleoptera: Cerambycidae) to Known Cerambycid Pheromones in the Presence and Absence of the Host Plant Volatile α-Pinene. Environmental Entomology, 2012, 41, 1587-1596.	1.4	69
7	Differential Bio-Activity of <i>lps</i> and <i>Dendroctonus</i> (Coleoptera: Scolytidae) Pheromone Components for <i>Monochamus clamator</i> and <i>M. scutellatus</i> (Coleoptera: Cerambycidae). Environmental Entomology, 2003, 32, 23-30.	1.4	56
8	The Impact of Trap Type and Design Features on Survey and Detection of Bark and Woodboring Beetles and Their Associates: A Review and Meta-Analysis. Annual Review of Entomology, 2017, 62, 127-146.	11.8	49
9	Effect of Aerosol Surface Lubricants on the Abundance and Richness of Selected Forest Insects Captured in Multiple-Funnel and Panel Traps. Journal of Economic Entomology, 2011, 104, 1258-1264.	1.8	35
10	Considering species richness and rarity when selecting optimal survey traps: comparisons of semiochemical baited flight intercept traps for Cerambycidae in eastern North America. Agricultural and Forest Entomology, 2015, 17, 36-47.	1.3	35
11	Male pheromone blend preference function measured in choice and no-choice wind tunnel trials with almond moths, Cadra cautella. Animal Behaviour, 2008, 75, 259-266.	1.9	32
12	Kairomonal Responses of Natural Enemies and Associates of the Southern Ips (Coleoptera:) Tj ETQq0 0 0 rgBT /O 321-335.	verlock 10 0.7	0 Tf 50 307 To 32
13	Design Factors That Influence the Performance of Flight Intercept Traps for the Capture of Longhorned Beetles (Coleoptera: Cerambycidae) from the Subfamilies Lamiinae and Cerambycinae. PLoS ONE, 2014, 9, e93203.	2.5	32
14	Genetic independence of female signal form and male receiver design in the almond moth, <i>Cadra cautella</i> . Journal of Evolutionary Biology, 2008, 21, 1666-1672.	1.7	28
15	Dilution of Fluon Before Trap Surface Treatment Has No Effect on Longhorned Beetle (Coleoptera:) Tj ETQq1 1 0.	784314 rş 1.8	gBT /Overlact
16	Molecular evidence of facultative intraguild predation by Monochamus titillator larvae (Coleoptera:) Tj ETQq0 0 0) rgBT /Ove 1.6	erlock 10 Tf 5 24
17	Do Native Insects and Associated Fungi Limit Non-Native Woodwasp, Sirex noctilio, Survival in a Newly Invaded Environment?. PLoS ONE, 2015, 10, e0138516.	2.5	24
18	Pine Sawyers (Coleoptera: Cerambycidae) Attracted to α-Pinene, Monochamol, and Ipsenol in North America. Journal of Economic Entomology, 2016, 109, 1205-1214.	1.8	23

#	Article	IF	CITATIONS
19	Role of Ipsdienol, Ipsenol, and <i>cis</i> -Verbenol in Chemical Ecology of <i>Ips avulsus</i> , <i>Ips calligraphus</i> , and <i>Ips grandicollis</i> (Coleoptera:) Tj ETQq1	1 0. 8843	14 ജBT /Ove
20	PredictingSirex noctilioandS.Ânigricornisemergence using degree days. Entomologia Experimentalis Et Applicata, 2013, 149, 177-184.	1.4	20
21	Trap deployment along linear transects perpendicular to forest edges: impact on capture of longhorned beetles (Coleoptera: Cerambycidae). Journal of Pest Science, 2019, 92, 299-308.	3.7	20
22	Detection and Identification of <i>Amylostereum areolatum</i> (Russulales:) Tj ETQq0 0 0 rgBT /Over Central Louisiana. Environmental Entomology, 2013, 42, 1246-1256.	lock 10 Tf 1.4	50 627 Td (A 18
23	Disruption by conophthorin of the kairomonal response of sawyer beetles to bark beetle pheromones. Journal of Chemical Ecology, 2003, 29, 2115-2129.	1.8	17
24	Heritable Variation in the Sex Pheromone of the Almond Moth, Cadra cautella. Journal of Chemical Ecology, 2006, 32, 621-641.	1.8	17
25	Impact of Horizontal Edge–Interior and Vertical Canopy–Understory Gradients on the Abundance and Diversity of Bark and Woodboring Beetles in Survey Traps. Insects, 2020, 11, 573.	2.2	15
26	Evidence that the availability of suitable pine limits nonâ€native <i>Sirex noctilio</i> in Ontario. Agricultural and Forest Entomology, 2016, 18, 357-366.	1.3	14
27	A Tetraene Aldehyde as the Major Sex Pheromone Component of the Promethea Moth (Callosamia) Tj ETQq1 1 ().784314 1.8	rgBTJOverloo
28	Nonlethal Effects of Nematode Infection on <i>Sirex noctilio</i> and <i>Sirex nigricornis</i> (Hymenoptera: Siricidae). Environmental Entomology, 2016, 45, 320-327.	1.4	13
29	Sex Attractant Pheromone of the Luna Moth, Actias luna (Linnaeus). Journal of Chemical Ecology, 2016, 42, 869-876.	1.8	11
30	Multiple introductions of Sirex noctilio (Hymenoptera: Siricidae) in northeastern North America based on microsatellite genotypes, and implications for biological control. Biological Invasions, 2017, 19, 1431-1447.	2.4	10
31	Bidirectional Selection for Novel Pheromone Blend Ratios in the Almond Moth, Cadra cautella. Journal of Chemical Ecology, 2007, 33, 2293-2307.	1.8	9
32	Influence of Nematode Parasitism, Body Size, Temperature, and Diel Period on the Flight Capacity of Sirex noctilio F. (Hymenoptera: Siricidae). Journal of Insect Behavior, 2016, 29, 301-314.	0.7	9
33	The evolution of insect visual opsin genes with specific consideration of the influence of ocelli and life history traits. Bmc Ecology and Evolution, 2022, 22, 2.	1.6	9
34	Trade-Off Between Sensitivity and Specificity in the Cabbage Looper Moth Response to Sex Pheromone. Journal of Chemical Ecology, 2008, 34, 1476-1486.	1.8	8
35	Type of Intercept Trap Not Important for Capturing Female <i>Sirex noctilio</i> and <i>S. nigricornis</i> (Hymenoptera: Siricidae) in North America. Journal of Economic Entomology, 2014, 107, 1295-1298.	1.8	8
36	Horizontal transmission of a parasitic nematode from a non-native to a native woodwasp?. Biological Invasions, 2016, 18, 355-358.	2.4	8

JEREMY D ALLISON

#	Article	IF	CITATIONS
37	Sirex noctilio(Hymenoptera: Siricidae) in Ontario (Canada) pine forests: observations over five years. Canadian Entomologist, 2018, 150, 347-360.	0.8	8
38	Trapping for Sirex Woodwasp in Brazilian Pine Plantations: Lure, Trap Type and Height of Deployment. Journal of Insect Behavior, 2018, 31, 210-221.	0.7	8
39	Influence of reproductive biology on establishment capacity in introduced Hymenoptera species. Biological Invasions, 2021, 23, 387-406.	2.4	8
40	Biology of a putative male aggregation-sex pheromone in Sirex noctilio (Hymenoptera: Siricidae). PLoS ONE, 2020, 15, e0244943.	2.5	8
41	Abiotic Induction Affects the Costs and Benefits of Inducible Herbivore Defenses in Datura wrightii. Journal of Chemical Ecology, 2012, 38, 1215-1224.	1.8	7
42	Observations of <i>Cerceris fumipennis</i> (Hymenoptera: Crabronidae) Phenology and Variation in Its Buprestid Prey in Louisiana. Florida Entomologist, 2015, 98, 1106-1113.	0.5	7
43	Emergence of adult female <i>Sirex nigricornis</i> F. and <i>Sirex noctilio</i> F. (Hymenoptera:) Tj ETQq1 1 0.7 Forest Entomology, 2016, 18, 206-213.	84314 rgB 1.3	T /Overlock 7
44	Light-Weight Portable Electroantennography Device as a Future Field-Based Tool for Applied Chemical Ecology. Journal of Chemical Ecology, 2020, 46, 557-566.	1.8	7
45	The Active Space of Mexican Rice Borer Pheromone Traps. Journal of Chemical Ecology, 2016, 42, 888-895.	1.8	6
46	Suitability of eastern pines for oviposition and survival of Sirex noctilio F PLoS ONE, 2017, 12, e0174532.	2.5	6
47	Factors influencing the dispersal of a native parasitoid, Phasgonophora sulcata, attacking the emerald ash borer: implications for biological control. BioControl, 2018, 63, 751-761.	2.0	6
48	Harnessing the potential of Precision Pest Management in plantation forests. Southern Forests, 2020, 82, 197-201.	0.7	6
49	Forest Biosecurity in Canada – An Integrated Multi-Agency Approach. Frontiers in Forests and Global Change, 2021, 4, .	2.3	6
50	Flight Phenologies of the Southeastern <i>Ips</i> Species (Coleoptera: Curculionidae:) Tj ETQq0 0 0 r Entomology, 2013, 42, 1226-1239.	gBT /Overlo 1.4	ock 10 Tf 50 5
51	Impact of intercept trap type on plume structure: a potential mechanism for differential performance of intercept trap designs for Monochamus species. Journal of Pest Science, 2020, 93, 993-1005.	3.7	4
52	Simulated leks increase the capture of female <i>Sirex noctilio</i> in the absence of host volatiles. International Journal of Pest Management, 2021, 67, 58-64.	1.8	4
53	Screening known Cerambycidae pheromones for activity with the Peruvian fauna. Agricultural and Forest Entomology, 2021, 23, 506.	1.3	4
54	Evidence for UV-green dichromacy in the basal hymenopteran Sirex noctilio (Siricidae). Scientific Reports, 2021, 11, 15601.	3.3	4

JEREMY D ALLISON

#	Article	IF	CITATIONS
55	Genetic diversity of the two-spotted stink bug Bathycoelia distincta (Pentatomidae) associated with macadamia orchards in South Africa. PLoS ONE, 2022, 17, e0269373.	2.5	4
56	Optimization of Pheromone Traps for Coryphodema tristis (Lepidoptera: Cossidae). Journal of Economic Entomology, 2017, 110, 1603-1610.	1.8	3
57	Mate Recognition by the Green Mate Borer, Hedypathes betulinus (Coleoptera: Cerambycidae): the Role of Cuticular Compounds. Journal of Insect Behavior, 2019, 32, 120-133.	0.7	3
58	Influence of the community of associates on Sirex noctilio brood production is contextual. Ecological Entomology, 2020, 45, 456-465.	2.2	3
59	Recent Records of Fruit Chafers (Scarabaeidae: Cetoniinae: Cetoniini) in the Southwestern Cape Region of South Africa Suggest That Range Expansions Were Facilitated by Human-Mediated Jump-Dispersal and Pre-Adaptation to Transformed Landscapes. African Entomology, 2019, 27, 135.	0.6	3
60	Variation in Enantiospecific Attraction of Ips avulsus (Coleoptera: Curculionidae) to the Pheromone Ipsdienol in Georgia. Journal of Economic Entomology, 2011, 104, 895-900.	1.8	2
61	Sex Pheromone of the Baldcypress Leafroller (Lepidoptera: Tortricidae). Journal of Economic Entomology, 2015, 108, 166-172.	1.8	2
62	Intergenic Spacer Single Nucleotide Polymorphisms for Genotyping Amylostereum areolatum (Russulales: Amylostereacea) Symbionts of Native and Non-native Sirex Species. Annals of the Entomological Society of America, 2020, 113, 280-287.	2.5	2
63	2. Pheromones: Reproductive Isolation and Evolution in Moths. , 2019, , 11-24.		2
64	Chemical and visual ecology of the Symphyta. Agricultural and Forest Entomology, 2022, 24, 453-465.	1.3	1
65	Effect of Sirex noctilio (Hymenoptera: Siricidae) attack density on Pinus sylvestris (Pinaceae) survival. Canadian Entomologist, 2019, 151, 340-344.	0.8	Ο
66	Evaluating methods to detect and monitor North American larval parasitoids of the emerald ash borer (Coleoptera: Buprestidae). Canadian Entomologist, 2020, 152, 389-398.	0.8	0
67	The Sex Pheromone of the Pine Brown-Tail Moth, Euproctis terminalis (Lepidoptera: Erebidae). Journal of Chemical Ecology, 2021, 47, 732-739.	1.8	Ο
68	3. Variation in Moth Pheromones: Causes and Consequences. , 2019, , 25-42.		0
69	Pheromones as management tools for non-Scolytinae Curculionidae: development and implementation considerations. Southern Forests, 2020, 82, 202-214.	0.7	Ο
70	Remnants of horizontal transfers of Wolbachia genes in a Wolbachia-free woodwasp. Bmc Ecology and Evolution, 2022, 22, 36.	1.6	0
71	Biology of a putative male aggregation-sex pheromone in Sirex noctilio (Hymenoptera: Siricidae). , 2020, 15, e0244943.		0
72	Biology of a putative male aggregation-sex pheromone in Sirex noctilio (Hymenoptera: Siricidae). , 2020, 15, e0244943.		0

5

#	Article	IF	CITATIONS
73	Biology of a putative male aggregation-sex pheromone in Sirex noctilio (Hymenoptera: Siricidae). , 2020, 15, e0244943.		0
74	Biology of a putative male aggregation-sex pheromone in Sirex noctilio (Hymenoptera: Siricidae). , 2020, 15, e0244943.		0
75	Biology of a putative male aggregation-sex pheromone in Sirex noctilio (Hymenoptera: Siricidae). , 2020, 15, e0244943.		0
76	Biology of a putative male aggregation-sex pheromone in Sirex noctilio (Hymenoptera: Siricidae). , 2020, 15, e0244943.		0