Robert O Hall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2760390/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature, 2008, 452, 202-205.	27.8	1,097
2	Food webs: reconciling the structure and function of biodiversity. Trends in Ecology and Evolution, 2012, 27, 689-697.	8.7	521
3	Nitrous oxide emission from denitrification in stream and river networks. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 214-219.	7.1	517
4	Sources of and processes controlling CO2 emissions change with the size of streams andÂrivers. Nature Geoscience, 2015, 8, 696-699.	12.9	430
5	Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology, 2011, 92, 1215-1225.	3.2	382
6	THE TROPHIC SIGNIFICANCE OF BACTERIA IN A DETRITUS-BASED STREAM FOOD WEB. Ecology, 1998, 79, 1995-2012.	3.2	281
7	Loss of a Harvested Fish Species Disrupts Carbon Flow in a Diverse Tropical River. Science, 2006, 313, 833-836.	12.6	270
8	Interâ€regional comparison of landâ€use effects on stream metabolism. Freshwater Biology, 2010, 55, 1874-1890.	2.4	267
9	The metabolic regimes of flowing waters. Limnology and Oceanography, 2018, 63, S99.	3.1	247
10	Exotic snails dominate nitrogen and carbon cycling in a highly productive stream. Frontiers in Ecology and the Environment, 2003, 1, 407-411.	4.0	239
11	ORGANIC MATTER FLOW IN STREAM FOOD WEBS WITH REDUCED DETRITAL RESOURCE BASE. Ecology, 2000, 81, 3445-3463.	3.2	210
12	ARE RIVERS JUST BIG STREAMS? A PULSE METHOD TO QUANTIFY NITROGEN DEMAND IN A LARGE RIVER. Ecology, 2008, 89, 2935-2945.	3.2	182
13	Nitrate removal in stream ecosystems measured by 15N addition experiments: Denitrification. Limnology and Oceanography, 2009, 54, 666-680.	3.1	181
14	Can't See the Forest for the Stream? In-stream Processing and Terrestrial Nitrogen Exports. BioScience, 2005, 55, 219.	4.9	178
15	Extremely High Secondary Production Of Introduced Snails In Rivers. , 2006, 16, 1121-1131.		177
16	Improving the fluorometric ammonium method: matrix effects, background fluorescence, and standard additions. Journal of the North American Benthological Society, 2007, 26, 167-177.	3.1	175
17	Nitrate removal in stream ecosystems measured by 15N addition experiments: Total uptake. Limnology and Oceanography, 2009, 54, 653-665.	3.1	165
18	Foodâ€web dynamics in a large river discontinuum. Ecological Monographs, 2013, 83, 311-337.	5.4	150

#	Article	IF	CITATIONS
19	Ecosystem ecology meets adaptive management: food web response to a controlled flood on the Colorado River, Glen Canyon. , 2011, 21, 2016-2033.		141
20	Metabolism, Gas Exchange, and Carbon Spiraling in Rivers. Ecosystems, 2016, 19, 73-86.	3.4	134
21	Overcoming Equifinality: Leveraging Long Time Series for Stream Metabolism Estimation. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 624-645.	3.0	126
22	Trophic basis of invertebrate production in 2 streams at the Hubbard Brook Experimental Forest. Journal of the North American Benthological Society, 2001, 20, 432-447.	3.1	123
23	Turbidity, light, temperature, and hydropeaking control primary productivity in the Colorado River, Grand Canyon. Limnology and Oceanography, 2015, 60, 512-526.	3.1	118
24	Relating transient storage to channel complexity in streams of varying land use in Jackson Hole, Wyoming. Water Resources Research, 2007, 43, .	4.2	113
25	Thinking outside the channel: modeling nitrogen cycling in networked river ecosystems. Frontiers in Ecology and the Environment, 2011, 9, 229-238.	4.0	104
26	Correcting wholeâ€ s tream estimates of metabolism for groundwater input. Limnology and Oceanography: Methods, 2005, 3, 222-229.	2.0	102
27	Distinct air–water gas exchange regimes in low- and high-energy streams. Nature Geoscience, 2019, 12, 259-263.	12.9	102
28	Invasive species impact: asymmetric interactions between invasive and endemic freshwater snails. Journal of the North American Benthological Society, 2008, 27, 509-520.	3.1	96
29	Estimating autotrophic respiration in streams using daily metabolism data. Freshwater Science, 2013, 32, 507-516.	1.8	86
30	Carbon dynamics of river corridors and the effects of human alterations. Ecological Monographs, 2017, 87, 379-409.	5.4	86
31	Dissolved organic carbon uptake in streams: A review and assessment of reachâ€scale measurements. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2019-2029.	3.0	83
32	Introduced Lake Trout Produced a Four‣evel Trophic Cascade in Yellowstone Lake. Transactions of the American Fisheries Society, 2010, 139, 1536-1550.	1.4	72
33	Solute-specific scaling of inorganic nitrogen and phosphorus uptake in streams. Biogeosciences, 2013, 10, 7323-7331.	3.3	72
34	Sediment, water column, and openâ€channel denitrification in rivers measured using membraneâ€inlet mass spectrometry. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1258-1274.	3.0	69
35	Modeling priming effects on microbial consumption of dissolved organic carbon in rivers. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 982-995.	3.0	67
36	Gas exchange in streams and rivers. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1391.	6.5	67

#	Article	IF	CITATIONS
37	How network structure can affect nitrogen removal by streams. Freshwater Biology, 2018, 63, 128-140.	2.4	65
38	The metabolic regimes of 356 rivers in the United States. Scientific Data, 2018, 5, 180292.	5.3	65
39	Wholeâ€ s tream ¹³ C tracer addition reveals distinct fates of newly fixed carbon. Ecology, 2015, 96, 403-416.	3.2	62
40	Scaling of dissolved organic carbon removal in river networks. Advances in Water Resources, 2017, 110, 136-146.	3.8	62
41	Light and flow regimes regulate the metabolism of rivers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	62
42	The influence of floodplain restoration on whole-stream metabolism in an agricultural stream: insights from a 5-year continuous data set. Freshwater Science, 2014, 33, 1043-1059.	1.8	60
43	Stream Metabolism. , 2017, , 219-233.		56
44	Forest age, wood and nutrient dynamics in headwater streams of the Hubbard Brook Experimental Forest, NH. Earth Surface Processes and Landforms, 2007, 32, 1154-1163.	2.5	53
45	Use of a Stable Carbon Isotope Addition to Trace Bacterial Carbon through a Stream Food Web. Journal of the North American Benthological Society, 1995, 14, 269-277.	3.1	51
46	Emergent productivity regimes of river networks. Limnology and Oceanography Letters, 2019, 4, 173-181.	3.9	50
47	Phosphorus-mediated changes in life history traits of the invasive New Zealand mudsnail (Potamopyrgus antipodarum). Oecologia, 2010, 163, 549-559.	2.0	46
48	Macroinvertebrate diets reflect tributary inputs and turbidity-driven changes in food availability in the Colorado River downstream of Glen Canyon Dam. Freshwater Science, 2013, 32, 397-410.	1.8	46
49	Particle transport and transient storage along a stream-size gradient in the Hubbard Brook Experimental Forest. Journal of the North American Benthological Society, 2002, 21, 195-205.	3.1	45
50	Twenty years of daily metabolism show riverine recovery following sewage abatement. Limnology and Oceanography, 2019, 64, S77.	3.1	45
51	The varying role of water column nutrient uptake along river continua in contrasting landscapes. Biogeochemistry, 2015, 125, 115-131.	3.5	42
52	Incorporation of Bacterial Extracellular Polysaccharide by Black Fly Larvae (Simuliidae). Journal of the North American Benthological Society, 1996, 15, 289-299.	3.1	39
53	Differential zooplankton feeding behaviors, selectivities, and community impacts of two planktivorous fishes. Environmental Biology of Fishes, 1992, 35, 401-411.	1.0	38
54	Air–water oxygen exchange in a large whitewater river. Limnology & Oceanography Fluids & Environments, 2012, 2, 1-11.	1.7	37

#	Article	IF	CITATIONS
55	Hyporheic invertebrates affect N cycling and respiration in stream sediment microcosms. Journal of the North American Benthological Society, 2004, 23, 416-428.	3.1	35
56	Enhancement of primary production during drought in a temperate watershed is greater in larger rivers than headwater streams. Limnology and Oceanography, 2019, 64, 1458-1472.	3.1	34
57	The effect of invertebrate consumption on bacterial transport in a mountain stream. Limnology and Oceanography, 1996, 41, 1180-1187.	3.1	33
58	Impacts of detritivore diversity loss on instream decomposition are greatest in the tropics. Nature Communications, 2021, 12, 3700.	12.8	33
59	Invasion and production of New Zealand mud snails in the Colorado River, Clen Canyon. Biological Invasions, 2010, 12, 3033-3043.	2.4	32
60	Use of argon to measure gas exchange in turbulent mountain streams. Biogeosciences, 2018, 15, 3085-3092.	3.3	30
61	Latitude dictates plant diversity effects on instream decomposition. Science Advances, 2021, 7, .	10.3	27
62	Response of American dippers (Cinclus mexicanus) to variation in stream water quality. Freshwater Biology, 2004, 49, 1123-1137.	2.4	26
63	Shifting stream planform state decreases stream productivity yet increases riparian animal production. Oecologia, 2018, 187, 167-180.	2.0	25
64	Sediment size and nutrients regulate denitrification in a tropical stream. Journal of the North American Benthological Society, 2009, 28, 480-490.	3.1	24
65	Shifts in Klamath River metabolism following a reservoir cyanobacterial bloom. Freshwater Science, 2016, 35, 795-809.	1.8	23
66	Nitrogen fixation can exceed inorganic nitrogen uptake fluxes in oligotrophic streams. Biogeochemistry, 2014, 121, 537-549.	3.5	21
67	Scaling Dissolved Nutrient Removal in River Networks: A Comparative Modeling Investigation. Water Resources Research, 2017, 53, 9623-9641.	4.2	21
68	Longâ€ŧerm changes in structure and function of a tropical headwater stream following a diseaseâ€driven amphibian decline. Freshwater Biology, 2015, 60, 575-589.	2.4	20
69	Ammonium uptake kinetics and nitrification in mountain streams. Freshwater Science, 2017, 36, 41-54.	1.8	20
70	Food web controls on mercury fluxes and fate in the Colorado River, Grand Canyon. Science Advances, 2020, 6, eaaz4880.	10.3	19
71	High Diet Overlap between Native Smallâ€Bodied Fishes and Nonnative Fathead Minnow in the Colorado River, Grand Canyon, Arizona. Transactions of the American Fisheries Society, 2014, 143, 1072-1083. –	1.4	17
72	A stream's role in watershed nutrient export. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10137-10138.	7.1	16

#	Article	IF	CITATIONS
73	Sustained stoichiometric imbalance and its ecological consequences in a large oligotrophic lake. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	16
74	Dam tailwaters compound the effects of reservoirs on the longitudinal transport of organic carbon in an arid river. Biogeosciences, 2015, 12, 4345-4359.	3.3	15
75	Metabolism of Streams and Rivers. , 2016, , 151-180.		15
76	Methods for quantifying aquatic macroinvertebrate diets. Freshwater Science, 2016, 35, 229-236.	1.8	15
77	Linking calcification by exotic snails to stream inorganic carbon cycling. Oecologia, 2010, 163, 235-244.	2.0	14
78	Detritivorous fish indirectly reduce insect secondary production in a tropical river. Ecosphere, 2011, 2, art135.	2.2	14
79	Demographic and mutualistic responses of stream nitrogen fixers to nutrients. Freshwater Science, 2013, 32, 991-1004.	1.8	13
80	Introduced lake trout alter nitrogen cycling beyond Yellowstone Lake. Ecosphere, 2015, 6, 1-24.	2.2	13
81	Drivers of nitrogen transfer in stream food webs across continents. Ecology, 2017, 98, 3044-3055.	3.2	13
82	A coupled metabolicâ€hydraulic model and calibration scheme for estimating wholeâ€river metabolism during dynamic flow conditions. Limnology and Oceanography: Methods, 2017, 15, 847-866.	2.0	13
83	Production and diversity of microorganisms associated with sinking particles in the subtropical North Pacific Ocean. Limnology and Oceanography, 2021, 66, 3255-3270.	3.1	12
84	Water column contributions to the metabolism and nutrient dynamics of mid-sized rivers. Biogeochemistry, 2021, 153, 67-84.	3.5	7
85	Linking denitrification with ecosystem respiration in mountain streams. Limnology and Oceanography Letters, 2019, 4, 145-154.	3.9	6
86	A precipitous decline in an invasive snail population cannot be explained by a native predator. Biological Invasions, 2020, 22, 363-378.	2.4	6
87	Nonconsumptive effects of Brook Trout predators reduce secondary production of mayfly prey. Freshwater Science, 2020, 39, 549-558.	1.8	2