
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2760329/publications.pdf Version: 2024-02-01

DETED NICK

#	Article	IF	CITATIONS
1	Life and death under salt stress: same players, different timing?. Journal of Experimental Botany, 2014, 65, 2963-2979.	4.8	240
2	Exploring Jasmonates in the Hormonal Network of Drought and Salinity Responses. Frontiers in Plant Science, 2015, 6, 1077.	3.6	221
3	Identification of rice <i>Allene Oxide Cyclase</i> mutants and the function of jasmonate for defence against <scp><i>Magnaporthe oryzae</i></scp> . Plant Journal, 2013, 74, 226-238.	5.7	204
4	ls Microtubule Disassembly a Trigger for Cold Acclimation?. Plant and Cell Physiology, 2003, 44, 676-686.	3.1	156
5	The jasmonate pathway mediates salt tolerance in grapevines. Journal of Experimental Botany, 2012, 63, 2127-2139.	4.8	147
6	Unilateral reorientation of microtubules at the outer epidermal wall during photo- and gravitropic curvature of maize coleoptiles and sunflower hypocotyls. Planta, 1990, 181, 162-168.	3.2	144
7	Auxin-Dependent Cell Division and Cell Elongation. 1-Naphthaleneacetic Acid and 2,4-Dichlorophenoxyacetic Acid Activate Different Pathways. Plant Physiology, 2005, 137, 939-948.	4.8	141
8	Increased tolerance to salt stress in OPDA-deficient rice ALLENE OXIDE CYCLASE mutants is linked to an increased ROS-scavenging activity. Journal of Experimental Botany, 2015, 66, 3339-3352.	4.8	141
9	Microtubules, signalling and abiotic stress. Plant Journal, 2013, 75, 309-323.	5.7	134
10	The host guides morphogenesis and stomatal targeting in the grapevine pathogen Plasmopara viticola. Planta, 2002, 215, 387-393.	3.2	129
11	Impaired Induction of the Jasmonate Pathway in the Rice Mutant hebiba Â. Plant Physiology, 2003, 133, 1820-1830.	4.8	128
12	The Phytoalexin Resveratrol Regulates the Initiation of Hypersensitive Cell Death in Vitis Cell. PLoS ONE, 2011, 6, e26405.	2.5	123
13	Auxin Stimulates Its Own Transport by Shaping Actin Filaments. Plant Physiology, 2009, 151, 155-167.	4.8	113
14	Actin Is Involved in Auxin-Dependent Patterning. Plant Physiology, 2007, 143, 1695-1704.	4.8	97
15	Gravity-induced reorientation of cortical microtubules observed in vivo. Plant Journal, 1999, 18, 449-453.	5.7	77
16	Aluminum-Induced Rapid Changes in the Microtubular Cytoskeleton of Tobacco Cell Lines. Plant and Cell Physiology, 2002, 43, 207-216.	3.1	77
17	The cytoskeleton enhances gene expression in the response to the Harpin elicitor in grapevine. Journal of Experimental Botany, 2010, 61, 4021-4031.	4.8	76
18	Using the Peptide Bp100 as a Cellâ€Penetrating Tool for the Chemical Engineering of Actin Filaments within Living Plant Cells. ChemBioChem, 2011, 12, 132-137.	2.6	75

#	Article	IF	CITATIONS
19	OsARF1, an auxin response factor from rice, is auxin-regulated and classifies as a primary auxin responsive gene. Plant Molecular Biology, 2002, 50, 415-425.	3.9	74
20	Genetic diversity of stilbene metabolism in Vitis sylvestris. Journal of Experimental Botany, 2015, 66, 3243-3257.	4.8	71
21	Molecular phylogeny of the genus <i>Vitis</i> (Vitaceae) based on plastid markers. American Journal of Botany, 2010, 97, 1168-1178.	1.7	69
22	Plant actin controls membrane permeability. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2304-2312.	2.6	69
23	A novel actin–microtubule crossâ€ŀinking kinesin, NtKCH, functions in cell expansion and division. New Phytologist, 2012, 193, 576-589.	7.3	69
24	Characterization of microbial current production as a function of microbe–electrode-interaction. Bioresource Technology, 2014, 157, 284-292.	9.6	68
25	The mode of interaction between <i>Vitis</i> and <i>Plasmopara viticola</i> Berk. & Curt. Ex de Bary depends on the host species. Plant Biology, 2009, 11, 886-898.	3.8	67
26	Cold Acclimation Can Induce Microtubular Cold Stability in a Manner Distinct from Abscisic Acid. Plant and Cell Physiology, 2001, 42, 999-1005.	3.1	66
27	The stability of cortical microtubules depends on their orientation. Plant Journal, 2002, 32, 1023-1032.	5.7	63
28	A kinesin with calponin-homology domain is involved in premitotic nuclear migration. Journal of Experimental Botany, 2010, 61, 3423-3437.	4.8	60
29	A role for actin-driven secretion in auxin-induced growth. Protoplasma, 2002, 219, 0072-0081.	2.1	58
30	Capturing in vivo Dynamics of the Actin Cytoskeleton Stimulated by Auxin or Light. Plant and Cell Physiology, 2004, 45, 855-863.	3.1	58
31	Nanosecond electric pulses trigger actin responses in plant cells. Biochemical and Biophysical Research Communications, 2009, 387, 590-595.	2.1	58
32	Defence Signalling Triggered by Flg22 and Harpin Is Integrated into a Different Stilbene Output in Vitis Cells. PLoS ONE, 2012, 7, e40446.	2.5	58
33	Auxin Transport Synchronizes the Pattern of Cell Division in a Tobacco Cell Line. Plant Physiology, 2003, 133, 1251-1260.	4.8	56
34	Dynamic Bridges—A Calponin-Domain Kinesin From Rice Links Actin Filaments and Microtubules in Both Cycling and Non-Cycling Cells. Plant and Cell Physiology, 2009, 50, 1493-1506.	3.1	54
35	Tobacco mutants with reduced microtubule dynamics are less susceptible to TMV. Plant Journal, 2010, 62, 829-839.	5.7	52
36	The auxin response of actin is altered in the rice mutantYin-Yang. Protoplasma, 1998, 204, 22-33.	2.1	51

#	Article	IF	CITATIONS
37	Plant chaperonins: a role in microtubule-dependent wall formation?. Protoplasma, 2000, 211, 234-244.	2.1	51
38	Plant tubulins: a melting pot for basic questions and promising applications. Transgenic Research, 2000, 9, 383-393.	2.4	50
39	Plant cell division is specifically affected by nitrotyrosine. Journal of Experimental Botany, 2010, 61, 901-909.	4.8	48
40	An ancestral allele of grapevine transcription factor <i>MYB14</i> promotes plant defence. Journal of Experimental Botany, 2016, 67, 1795-1804.	4.8	48
41	Light induces jasmonateâ€isoleucine conjugation via <scp>OsJAR1</scp> â€dependent and â€independent pathways in rice. Plant, Cell and Environment, 2014, 37, 827-839.	5.7	47
42	Cold sensing in grapevine—Which signals are upstream of the microtubular "thermometer― Plant, Cell and Environment, 2017, 40, 2844-2857.	5.7	46
43	Passage of Trojan Peptoids into Plant Cells. ChemBioChem, 2009, 10, 2504-2512.	2.6	45
44	A stilbene synthase allele from a Chinese wild grapevine confers resistance to powdery mildew by recruiting salicylic acid signalling for efficient defence. Journal of Experimental Botany, 2016, 67, 5841-5856.	4.8	45
45	A microtubule-associated protein in maize is expressed during phytochrome-induced cell elongation. Plant Journal, 1995, 8, 835-844.	5.7	44
46	Visualizing the Self-Assembly of Tubulin with Luminescent Nanorods. Journal of Nanoscience and Nanotechnology, 2003, 3, 380-385.	0.9	44
47	Probing the actin-auxin oscillator. Plant Signaling and Behavior, 2010, 5, 94-98.	2.4	43
48	Tobacco Arp3 is localized to actin-nucleating sites in vivo. Journal of Experimental Botany, 2009, 60, 603-614.	4.8	42
49	Salt adaptation requires efficient fine-tuning of jasmonate signalling. Protoplasma, 2014, 251, 881-898.	2.1	41
50	Pulsed electric field (PEF)-assisted protein recovery from Chlorella vulgaris is mediated by an enzymatic process after cell death. Algal Research, 2019, 41, 101536.	4.6	40
51	The plant cytoskeleton controls regulatory volume increase. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2111-2120.	2.6	39
52	The cytoskeleton is disrupted by the bacterial effector HrpZ, but not by the bacterial PAMP flg22, in tobacco BY-2 cells. Journal of Experimental Botany, 2013, 64, 1805-1816.	4.8	38
53	Cytoskeletal responses during early development of the downy mildew of grapevine (Plasmopara) Tj ETQq $1\ 1$ ().784314 r 2.1	gBT_/Overloc
54	Phytochrome inhibits the effectiveness of gibberellins to induce cell elongation in rice. Planta, 1994, 194, 256-263.	3.2	36

#	Article	IF	CITATIONS
55	Jasmonates are induced by the PAMP flg22 but not the cell death-inducing elicitor Harpin in Vitis rupestris. Protoplasma, 2017, 254, 271-283.	2.1	36
56	Actin as Deathly Switch? How Auxin Can Suppress Cell-Death Related Defence. PLoS ONE, 2015, 10, e0125498.	2.5	34
5 7	Two grapevine metacaspase genes mediate ETI-like cell death in grapevine defence against infection of Plasmopara viticola. Protoplasma, 2019, 256, 951-969.	2.1	34
58	Auxin-dependent microtubule responses and seedling development are affected in a rice mutant resistant to EPC. Plant Journal, 1994, 6, 651-663.	5.7	33
59	Organization of perinuclear actin in live tobacco cells observed by PALM with optical sectioning. Journal of Plant Physiology, 2014, 171, 97-108.	3.5	33
60	Mining new resources for grape resistance against Botryosphaeriaceae: a focus on <i>Vitis vinifera</i> subsp. <i>sylvestris</i> . Plant Pathology, 2016, 65, 273-284.	2.4	33
61	Cytoskeletal Drugs and Gravity-Induced Lateral Auxin Transport in Rice Coleoptiles. Plant Biology, 2000, 2, 176-181.	3.8	32
62	Activation-tagged tobacco mutants that are tolerant to antimicrotubular herbicides are cross-resistant to chilling stress. Transgenic Research, 2003, 12, 615-629.	2.4	31
63	Cell cycle phaseâ€specific death response of tobacco BYâ€2 cell line to cadmium treatment. Plant, Cell and Environment, 2008, 31, 1634-1643.	5.7	31
64	Manipulation of Intracellular Auxin in a Single Cell by Light with Esteraseâ€Resistant Caged Auxins. ChemBioChem, 2009, 10, 2195-2202.	2.6	31
65	Phytochrome A requires jasmonate for photodestruction. Planta, 2009, 229, 1035-1045.	3.2	31
66	Challenge Integrity: The Cell-Penetrating Peptide BP100 Interferes with the Auxin–Actin Oscillator. Plant and Cell Physiology, 2017, 58, pcw161.	3.1	31
67	Cryptic diversity of Plasmopara viticola (Oomycota, Peronosporaceae) in North America. Organisms Diversity and Evolution, 2011, 11, 3-7.	1.6	30
68	De Novo Characterization of a Cephalotaxus hainanensis Transcriptome and Genes Related to Paclitaxel Biosynthesis. PLoS ONE, 2014, 9, e106900.	2.5	29
69	Product authenticity versus globalisation—The Tulsi case. PLoS ONE, 2018, 13, e0207763.	2.5	29
70	Microscopic Authentication of Commercial Herbal Products in the Globalized Market: Potential and Limitations. Frontiers in Pharmacology, 2020, 11, 876.	3.5	29
71	Goji Who? Morphological and DNA Based Authentication of a "Superfood― Frontiers in Plant Science, 2018, 9, 1859.	3.6	28
72	A large plant beta-tubulin family with minimal C-terminal variation but differences in expression. Gene, 2004, 340, 151-160.	2.2	27

#	Article	IF	CITATIONS
73	Dynamic Actin Controls Polarity Induction <i>de novo</i> in Protoplasts. Journal of Integrative Plant Biology, 2013, 55, 142-159.	8.5	27
74	Microsatellite markers reveal multiple origins for <scp>I</scp> talian weedy rice. Ecology and Evolution, 2013, 3, 4786-4798.	1.9	27
75	Identification of Mint Scents Using a QCM Based E-Nose. Chemosensors, 2021, 9, 31.	3.6	27
76	Different forms of osmotic stress evoke qualitatively different responses in rice. Journal of Plant Physiology, 2016, 202, 45-56.	3.5	25
77	Nicotiana tabacum actin-depolymerizing factor 2 is involved in actin-driven, auxin-dependent patterning. Journal of Plant Physiology, 2013, 170, 1057-1066.	3.5	24
78	Microtubule dynamics modulate sensing during cold acclimation in grapevine suspension cells. Plant Science, 2019, 280, 18-30.	3.6	24
79	Upstream of gene expression: what is the role of microtubules in cold signalling?. Journal of Experimental Botany, 2020, 71, 36-48.	4.8	24
80	Microtubules and the tax payer. Protoplasma, 2012, 249, 81-94.	2.1	23
81	Gallic acid induces mitotic catastrophe and inhibits centrosomal clustering in HeLa cells. Toxicology in Vitro, 2015, 30, 506-513.	2.4	23
82	Direct Immunofluorescence of Plant Microtubules Based on Semiconductor Nanocrystals. Bioconjugate Chemistry, 2007, 18, 1879-1886.	3.6	22
83	Cellular Base of Mint Allelopathy: Menthone Affects Plant Microtubules. Frontiers in Plant Science, 2020, 11, 546345.	3.6	22
84	Ancestral chemotypes of cultivated grapevine with resistance to Botryosphaeriaceaeâ€related dieback allocate metabolism towards bioactive stilbenes. New Phytologist, 2021, 229, 1133-1146.	7.3	22
85	A myosin inhibitor impairs auxin-induced cell division. Protoplasma, 2003, 222, 193-204.	2.1	21
86	A patch clamp study on the electro-permeabilization of higher plant cells: Supra-physiological voltages induce a high-conductance, K+ selective state of the plasma membrane. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1728-1736.	2.6	21
87	Tubulin is actively exported from the nucleus through the Exportin1/CRM1 pathway. Scientific Reports, 2019, 9, 5725.	3.3	21
88	An antifungal protein from Ginkgo biloba binds actin and can trigger cell death. Protoplasma, 2016, 253, 1159-1174.	2.1	19
89	The jasmonate-free rice mutant hebiba is affected in the response of phyA′/phyA″ pools and protochlorophyllide biosynthesis to far-red light. Photochemical and Photobiological Sciences, 2004, 3, 1058-1062.	2.9	18
90	Use of Nanoparticles to Study and Manipulate Plant cells. Advanced Engineering Materials, 2010, 12, B406.	3.5	18

#	Article	IF	CITATIONS
91	A rice class-XIV kinesin enters the nucleus in response to cold. Scientific Reports, 2018, 8, 3588.	3.3	18
92	Crop wild relatives as genetic resources – the case of the European wild grape. Canadian Journal of Plant Science, 2015, 95, 905-912.	0.9	17
93	A balanced JA/ABA status may correlate with adaptation to osmotic stress in Vitis cells. Journal of Plant Physiology, 2015, 185, 57-64.	3.5	17
94	Nanosecond pulsed electric fields trigger cell differentiation in Chlamydomonas reinhardtii. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 651-661.	2.6	17
95	Sensory role of actin in auxin-dependent responses of tobacco BY-2. Journal of Plant Physiology, 2017, 218, 6-15.	3.5	17
96	Control of Cell Axis. , 2007, , 3-46.		16
97	Genetic authentication by RFLP versus ARMS? The case of Moldavian dragonhead (Dracocephalum) Tj ETQq1 1 0.	784314 rg	gBT /Overlo
98	Single microtubules and small networks become significantly stiffer on short time-scales upon mechanical stimulation. Scientific Reports, 2017, 7, 4229.	3.3	16
99	Grapevine fatty acid hydroperoxide lyase generates actin-disrupting volatiles and promotes defence-related cell death. Journal of Experimental Botany, 2018, 69, 2883-2896.	4.8	16
100	Italian weedy rice—A case of deâ€domestication?. Ecology and Evolution, 2020, 10, 8449-8464.	1.9	16
101	Mechanics of the Cytoskeleton. Signaling and Communication in Plants, 2011, , 53-90.	0.7	16
102	Hsp90 binds microtubules and is involved in the reorganization of the microtubular network in angiosperms. Journal of Plant Physiology, 2012, 169, 1329-1339.	3.5	15
103	Nanosecond Electric Pulses Affect a Plant-Specific Kinesin at the Plasma Membrane. Journal of Membrane Biology, 2013, 246, 927-938.	2.1	15
104	Actin marker lines in grapevine reveal a gatekeeper function of guard cells. Journal of Plant Physiology, 2014, 171, 1164-1173.	3.5	15
105	Suppression of tubulin detyrosination by parthenolide recruits the plant-specific kinesin KCH to cortical microtubules. Journal of Experimental Botany, 2015, 66, 2001-2011.	4.8	15
106	Probing the contractile vacuole as Achilles' heel of the biotrophic grapevine pathogen Plasmopara viticola. Protoplasma, 2017, 254, 1887-1901.	2.1	15
107	Molecular diagnostics of Lemon Myrtle (Backhousia citriodora versus Leptospermum citratum). European Food Research and Technology, 2012, 234, 853-861.	3.3	14
108	Tubulin marker line of grapevine suspension cells as a tool to follow early stress responses. Journal of Plant Physiology, 2015, 176, 118-128.	3.5	14

#	Article	IF	CITATIONS
109	Morphological and molecular characterization of sweet, grain and forage sorghum (<i>Sorghum) Tj ETQq1 1 0.784 49-58.</i>	4314 rgBT 1.6	/Overlock 14
110	Microtubules and the Evolution of Mitosis. , 2008, , 233-266.		13
111	Buder revisited: cell and organ polarity during phototropism*. Plant, Cell and Environment, 1996, 19, 1179-1187.	5.7	12
112	Noise Yields Order - Auxin, Actin, and Polar Patterning. Plant Biology, 2006, 8, 360-370.	3.8	12
113	Light can rescue auxin-dependent synchrony of cell division in a tobacco cell line. Journal of Experimental Botany, 2010, 61, 503-510.	4.8	12
114	Time-resolved NMR metabolomics of plant cells based on a microfluidic chip. Journal of Plant Physiology, 2016, 200, 28-34.	3.5	12
115	Combination of Plant Metabolic Modules Yields Synthetic Synergies. PLoS ONE, 2017, 12, e0169778.	2.5	12
116	Hunting modulators of plant defence: the grapevine trunk disease fungus Eutypa lata secretes an amplifier for plant basal immunity. Journal of Experimental Botany, 2020, 71, 3710-3724.	4.8	12
117	Acrylamide inhibits gravitropism and affects microtubules in rice coleoptiles. Protoplasma, 2006, 227, 211-222.	2.1	10
118	Development and validation of microscopical diagnostics for †Tulsi' (Ocimum tenuiflorum L.) in ayurvedic preparations. European Food Research and Technology, 2009, 229, 99-106.	3.3	10
119	Plant Cells Use Auxin Efflux to Explore Geometry. Scientific Reports, 2015, 4, 5852.	3.3	10
120	Nanosecond pulsed electric fields modulate the expression of the astaxanthin biosynthesis genes psy, crtR-b and bkt 1 in Haematococcus pluvialis. Scientific Reports, 2020, 10, 15508.	3.3	10
121	On the applicability of the Tubulin-Based Polymorphism (TBP) genotyping method: a comprehensive guide illustrated through the application on different genetic resources in the legume family. Plant Methods, 2020, 16, 86.	4.3	9
122	Glycyrrhizin, the active compound of the TCM drug Gan Cao stimulates actin remodelling and defence in grapevine. Plant Science, 2021, 302, 110712.	3.6	9
123	A modular microfluidic bioreactor to investigate plant cell–cell interactions. Protoplasma, 2022, 259, 173-186.	2.1	8
124	Plant Cell Strains in Fundamental Research and Applications. Plant Cell Monographs, 2014, , 455-481.	0.4	8
125	The jasmonate biosynthesis Gene OsOPR7 can mitigate salinity induced mitochondrial oxidative stress. Plant Science, 2022, 316, 111156.	3.6	8
126	Effects of Light and Wounding on Jasmonates in Rice phyAphyC Mutants. Plants, 2014, 3, 143-159.	3.5	7

#	Article	IF	CITATIONS
127	A mitochondria-targeted coenzyme Q peptoid induces superoxide dismutase and alleviates salinity stress in plant cells. Scientific Reports, 2020, 10, 11563.	3.3	7
128	Dissecting the membrane-microtubule sensor in grapevine defence. Horticulture Research, 2021, 8, 260.	6.3	7
129	Nanosecond pulsed electrical fields enhance product recovery in plant cell fermentation. Protoplasma, 2020, 257, 1585-1594.	2.1	6
130	Mining Sorghum Biodiversity—Potential of Dual-Purpose Hybrids for Bio-Economy. Diversity, 2021, 13, 192.	1.7	6
131	Moonlighting organelles—signals and cellular architecture. Protoplasma, 2013, 250, 1-2.	2.1	5
132	Plastic plastids. Protoplasma, 2015, 252, 1-2.	2.1	5
133	A rice tubulin tyrosine ligaseâ€like 12 protein affects the dynamic and orientation of microtubules. Journal of Integrative Plant Biology, 2021, 63, 848-864.	8.5	5
134	Sniff Species: SURMOF-Based Sensor Array Discriminates Aromatic Plants beyond the Genus Level. Chemosensors, 2021, 9, 171.	3.6	5
135	Starve to Sustain—An Ancient Syrian Landrace of Sorghum as Tool for Phosphorous Bio-Economy?. International Journal of Molecular Sciences, 2021, 22, 9312.	4.1	5
136	Aluminum can activate grapevine defense through actin remodeling. Horticulture Research, 2022, 9, .	6.3	5
137	Membranes of unification. Protoplasma, 2017, 254, 1-2.	2.1	4
138	A Peptoid Delivers CoQ-derivative to Plant Mitochondria via Endocytosis. Scientific Reports, 2019, 9, 9839.	3.3	4
139	Authentication of holy basil using markers relating to a toxicology-relevant compound. European Food Research and Technology, 2021, 247, 2485-2497.	3.3	4
140	Biological signalling supports biotechnology – Pulsed electric fields extract a cell-death inducing factor from Chlorella vulgaris. Bioelectrochemistry, 2022, 143, 107991.	4.6	4
141	On humans and their crops—miRNAs and the evolution of fertility. Protoplasma, 2021, 258, 1-2.	2.1	4
142	The Minus-End-Directed Kinesin OsDLK Shuttles to the Nucleus and Modulates the Expression of Cold-Box Factor 4. International Journal of Molecular Sciences, 2022, 23, 6291.	4.1	4
143	Why to Spend Tax Money on Plant Microtubules?. Plant Cell Monographs, 2014, , 39-67.	0.4	3

9

#	Article	IF	CITATIONS
145	Cell shape can be uncoupled from formononetin induction in a novel cell line from Callerya speciosa. Plant Cell Reports, 2018, 37, 665-676.	5.6	3
146	Destroy to create. Protoplasma, 2018, 255, 1-2.	2.1	3
147	Gender studies—a cell biological viewpoint. Protoplasma, 2019, 256, 1-2.	2.1	3
148	Intelligence without neurons: a Turing Test for plants?. Protoplasma, 2021, 258, 455-458.	2.1	3
149	Black is beautiful (and protective): melanin synthesis in animals and plants. Protoplasma, 2021, 258, 923-924.	2.1	3
150	Transcending borders—integrating cell biology in the new Protoplasma. Protoplasma, 2014, 251, 989-990.	2.1	2
151	Perfumes of survival. Protoplasma, 2015, 252, 933-934.	2.1	2
152	Break of symmetry in regenerating tobacco protoplasts is independent of nuclear positioning. Journal of Integrative Plant Biology, 2016, 58, 799-812.	8.5	2
153	From information to knowledge. Protoplasma, 2016, 253, 1-2.	2.1	2
154	Ars comparandi: "molecular convergence―versus "functional homology― Protoplasma, 2018, 255, 1263-1265.	2.1	2
155	The stable brother hiding in the shadow—news on intermediate filaments. Protoplasma, 2020, 257, 1257-1258.	2.1	2
156	At the border of the unknownâ \in "a plea for curiosity. Protoplasma, 2020, 257, 1-2.	2.1	2
157	Aniplant or plantimal? Superorganisms cross borders. Protoplasma, 2022, 259, 1-2.	2.1	2
158	Editorial: comparing is worth the effort—lessons from mitosis. Protoplasma, 2009, 237, 1-2.	2.1	1
159	Why the taxpayer profits from plant cell biology—special issue "Applied Plant Cell Biologyâ€: Protoplasma, 2012, 249, 77-79.	2.1	1
160	Activity in space. Protoplasma, 2013, 250, 1229-1230.	2.1	1
161	The Oberhätchen principle—growth and integrity. Protoplasma, 2014, 251, 1263-1264.	2.1	1
162	Life breaks symmetry. Protoplasma, 2016, 253, 965-966.	2.1	1

#	Article	IF	CITATIONS
163	Cellular mysteries of plant sex. Protoplasma, 2016, 253, 1389-1390.	2.1	1
164	Causa formalis—detail matters. Protoplasma, 2017, 254, 1469-1470.	2.1	1
165	Why starch is essential and dispensable. Protoplasma, 2018, 255, 1595-1596.	2.1	1
166	Coupling Langmuir with Michaelis-Menten—A practical alternative to estimate Se content in rice?. PLoS ONE, 2019, 14, e0214219.	2.5	1
167	Double lysis: an integrative time-saving method yielding high-quality RNA from strawberry. Journal of Genetic Engineering and Biotechnology, 2020, 18, 22.	3.3	1
168	Tracking footprints of plastid evolution. Protoplasma, 2020, 257, 1019-1020.	2.1	1
169	Sensitive or sentient—a painful debate. Protoplasma, 2021, 258, 235-238.	2.1	1
170	Steady flow, not steady state $\hat{a} \in \hat{a}$ a plea for physiological thinking. Protoplasma, 2021, 258, 681-682.	2.1	1
171	Antiâ€microtubule activity of the traditional Chinese medicine herb Northern Ban Lan (<i>Isatis) Tj ETQq1 1 0.78</i>	84314 rgB⁻ 8.5	Г/Qverlock 1(
172	A rice tubulin tyrosine ligase like 12 regulates phospholipase D activity and tubulin synthesis. Plant Science, 2022, 316, 111155.	3.6	1
173	Cell type matters: competence for alkaloid metabolism differs in two seed-derived cell strains of Catharanthus roseus. Protoplasma, 0, , .	2.1	1
174	You need to see what you want to understand—ultrastructure helps to uncover the mysteries of early life. Protoplasma, 2013, 250, 797-798.	2.1	0
175	Significant signals—versatile interpreters. Protoplasma, 2013, 250, 637-638.	2.1	0
176	Green signals for life and death. Protoplasma, 2013, 250, 423-424.	2.1	0
177	A cell biologist on Mars—the exotic world of algal cells. Protoplasma, 2013, 250, 963-964.	2.1	0
178	Methusalem's mystery. Protoplasma, 2014, 251, 1-2.	2.1	0
179	Sniff and runâ \in "the chemistry of attraction. Protoplasma, 2014, 251, 459-460.	2.1	0
180	Chicken or egg—Weismann revisited. Protoplasma, 2014, 251, 729-730.	2.1	0

#	Article	IF	CITATIONS
181	Enlightenment by the invisible. Protoplasma, 2015, 252, 1187-1188.	2.1	Ο
182	Turn of the screw—helicases everywhere. Protoplasma, 2015, 252, 1407-1408.	2.1	0
183	The secret masters of the planet reveal their secrets. Protoplasma, 2015, 252, 383-384.	2.1	Ο
184	Hypothesis-driven research for hypothesis-driven application. Protoplasma, 2015, 252, 715-716.	2.1	0
185	Life versus â€`biomass'—why application needs cell biology. Protoplasma, 2016, 253, 1175-1176.	2.1	ο
186	If you cannot move, send messengers: how cells organize space. Protoplasma, 2016, 253, 217-218.	2.1	0
187	Mechanics of mystery. Protoplasma, 2017, 254, 615-616.	2.1	Ο
188	Hijacking cellular signals. Protoplasma, 2017, 254, 2053-2054.	2.1	0
189	The genetic self. Protoplasma, 2018, 255, 437-438.	2.1	Ο
190	Living interfaces watched with new tools. Protoplasma, 2018, 255, 717-718.	2.1	0
191	Phase in space. Protoplasma, 2018, 255, 987-988.	2.1	ο
192	A plea for biological descriptions: the case of reproduction biology. Protoplasma, 2019, 256, 1461-1462.	2.1	0
193	Move backward, forward signals. Protoplasma, 2019, 256, 1171-1172.	2.1	Ο
194	Symbiotic secrets. Protoplasma, 2019, 256, 881-882.	2.1	0
195	The power of time—how to set up a rhythm. Protoplasma, 2019, 256, 583-584.	2.1	Ο
196	Be general, but be specific—hidden traps of model transfer in cell biology. Protoplasma, 2020, 257, 1495-1496.	2.1	0
197	How to handle the risks of oxygen. Protoplasma, 2020, 257, 333-334.	2.1	0
198	Editorial: How Cells Build Plants: Regulatory Mechanisms for Integrated Functioning of Plant Cells and the Whole Plant Body. Frontiers in Plant Science, 2021, 12, 706892.	3.6	0

#	Article	IF	CITATIONS
199	Is a genome more than its genes?. Protoplasma, 2022, 259, 233-235.	2.1	0
200	TowardÂbioeconomy of a multipurpose cereal: Cell wall chemistry of Sorghum is largely buffered against stem sugar content. Cereal Chemistry, 0, , .	2.2	0
201	Universalistic legacy. Protoplasma, 2022, 259, 485.	2.1	0
202	Integrate and work together $\hat{a} \in $ compartments as functional units. Protoplasma, 0, , .	2.1	0
203	Tannin phenotyping of the Vitaceae reveals a phylogenetic linkage of epigallocatechin in berries and leaves. Annals of Botany, 0, , .	2.9	0