Takahiro K Fujiwara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/275875/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-Molecule Imaging Reveals Rapid Estradiol Action on the Surface Movement of AMPA Receptors in Live Neurons. Frontiers in Cell and Developmental Biology, 2021, 9, 708715.	3.7	3
2	Live-Cell Imaging of Single Neurotrophin Receptor Molecules on Human Neurons in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 13260.	4.1	3
3	Dynamic actin-mediated nano-scale clustering of CD44 regulates its meso-scale organization at the plasma membrane. Molecular Biology of the Cell, 2020, 31, 561-579.	2.1	38
4	Defining raft domains in the plasma membrane. Traffic, 2020, 21, 106-137.	2.7	94
5	Synergetic Roles of Formyl Peptide Receptor 1 Oligomerization in Ligand-Induced Signal Transduction. ACS Chemical Biology, 2020, 15, 2577-2587.	3.4	11
6	Redox-Sensitive Cysteines Confer Proximal Control of the Molecular Crowding Barrier in the Nuclear Pore. Cell Reports, 2020, 33, 108484.	6.4	3
7	High-speed single-molecule imaging reveals signal transduction by induced transbilayer raft phases. Journal of Cell Biology, 2020, 219, .	5.2	35
8	HsSAS-6-dependent cartwheel assembly ensures stabilization of centriole intermediates. Journal of Cell Science, 2019, 132, .	2.0	24
9	Dynamic Contact Guidance of Myoblasts by Feature Size and Reversible Switching of Substrate Topography: Orchestration of Cell Shape, Orientation, and Nematic Ordering of Actin Cytoskeletons. Langmuir, 2019, 35, 7538-7551.	3.5	24
10	Super-long single-molecule tracking reveals dynamic-anchorage-induced integrin function. Nature Chemical Biology, 2018, 14, 497-506.	8.0	93
11	The Effect of Lactoferrin and Pepsin-Treated Lactoferrin on IEC-6 Cell Damage Induced by Clostridium Difficile Toxin B. Shock, 2018, 50, 119-125.	2.1	7
12	The Class-A GPCR Dopamine D2 Receptor Forms Transient Dimers Stabilized by Agonists: Detection by Single-Molecule Tracking. Cell Biochemistry and Biophysics, 2018, 76, 29-37.	1.8	67
13	Unraveling of Lipid Raft Organization in Cell Plasma Membranes by Single-Molecule Imaging of Ganglioside Probes. Advances in Experimental Medicine and Biology, 2018, 1104, 41-58.	1.6	8
14	Revealing the Raft Domain Organization in the Plasma Membrane by Single-Molecule Imaging of Fluorescent Ganglioside Analogs. Methods in Enzymology, 2018, 598, 267-282.	1.0	19
15	Raft-based sphingomyelin interactions revealed by new fluorescent sphingomyelin analogs. Journal of Cell Biology, 2017, 216, 1183-1204.	5.2	108
16	Development of new ganglioside probes and unraveling of raft domain structure by single-molecule imaging. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2494-2506.	2.4	32
17	Dynamic Meso-Scale Anchorage of GPI-Anchored Receptors in the Plasma Membrane: Prion Protein vs. Thy1. Cell Biochemistry and Biophysics, 2017, 75, 399-412.	1.8	5
18	Cortical actin nodes: Their dynamics and recruitment of podosomal proteins as revealed by super-resolution and single-molecule microscopy. PLoS ONE, 2017, 12, e0188778.	2.5	9

2

Takahiro K Fujiwara

#	Article	IF	CITATIONS
19	Selective Labeling of Proteins on Living Cell Membranes Using Fluorescent Nanodiamond Probes. Nanomaterials, 2016, 6, 56.	4.1	24
20	Spatiotemporal analysis with a genetically encoded fluorescent RNA probe reveals TERRA function around telomeres. Scientific Reports, 2016, 6, 38910.	3.3	26
21	Raft-based interactions of gangliosides with a GPI-anchored receptor. Nature Chemical Biology, 2016, 12, 402-410.	8.0	165
22	Confined diffusion of transmembrane proteins and lipids induced by the same actin meshwork lining the plasma membrane. Molecular Biology of the Cell, 2016, 27, 1101-1119.	2.1	165
23	Leader-Containing Uncapped Viral Transcript Activates RIG-I in Antiviral Stress Granules. PLoS Pathogens, 2016, 12, e1005444.	4.7	68
24	Ultrafast Diffusion of a Fluorescent Cholesterol Analog in Compartmentalized Plasma Membranes. Traffic, 2014, 15, 583-612.	2.7	77
25	Lateral diffusion in a discrete fluid membrane with immobile particles. Physical Review E, 2014, 89, 022724.	2.1	20
26	Tracking single molecules at work in living cells. Nature Chemical Biology, 2014, 10, 524-532.	8.0	290
27	Biexciton state causes photoluminescence fluctuations in CdSe/ZnS core/shell quantum dots at high photoexcitation densities. Physical Review B, 2013, 88, .	3.2	13
28	Oscillatory Control of Factors Determining Multipotency and Fate in Mouse Neural Progenitors. Science, 2013, 342, 1203-1208.	12.6	444
29	Single-Molecule Imaging of Receptor–Receptor Interactions. Methods in Cell Biology, 2013, 117, 373-390.	1.1	20
30	Biocompatible fluorescent silicon nanocrystals for single-molecule tracking and fluorescence imaging. Journal of Cell Biology, 2013, 202, 967-983.	5.2	48
31	Temporal analysis of recruitment of mammalian ATG proteins to the autophagosome formation site. Autophagy, 2013, 9, 1491-1499.	9.1	196
32	Rac1 recruitment to the archipelago structure of the focal adhesion through the fluid membrane as revealed by singleâ€molecule analysis. Cytoskeleton, 2013, 70, 161-177.	2.0	36
33	Functional Characterization of Domains of IPS-1 Using an Inducible Oligomerization System. PLoS ONE, 2013, 8, e53578.	2.5	22
34	Biocompatible fluorescent silicon nanocrystals for single-molecule tracking and fluorescence imaging. Journal of General Physiology, 2013, 142, 14240IA31.	1.9	0
35	1PT209 Rac1 recruitment to the archipelago structure of focal adhesion through the fluid membrane as revealed by single-molecule analysis(The 50th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2012, 52, S103-S104.	0.1	0
36	3PT172 Dynamics of normal prion protein, a raft-associated GPI-anchored molecule, in the live neuronal plasma membrane(The 50th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2012, 52, S170-S171.	0.1	0

#	Article	IF	CITATIONS
37	Dynamic Organizing Principles of the Plasma Membrane that Regulate Signal Transduction: Commemorating the Fortieth Anniversary of Singer and Nicolson's Fluid-Mosaic Model. Annual Review of Cell and Developmental Biology, 2012, 28, 215-250.	9.4	394
38	Cholesterol modulates cell signaling and protein networking by specifically interacting with PDZ domain-containing scaffold proteins. Nature Communications, 2012, 3, 1249.	12.8	129
39	Membrane mechanisms for signal transduction: The coupling of the meso-scale raft domains to membrane-skeleton-induced compartments and dynamic protein complexes. Seminars in Cell and Developmental Biology, 2012, 23, 126-144.	5.0	127
40	Transient GPI-anchored protein homodimers are units for raft organization and function. Nature Chemical Biology, 2012, 8, 774-783.	8.0	234
41	Archipelago architecture of the focal adhesion: Membrane molecules freely enter and exit from the focal adhesion zone. Cytoskeleton, 2012, 69, 380-392.	2.0	50
42	Confining Domains Lead to Reaction Bursts: Reaction Kinetics in the Plasma Membrane. PLoS ONE, 2012, 7, e32948.	2.5	48
43	3A1458 Anomalous rapid diffusion of GPI-anchored proteins as detected by high-speed single fluorescent-molecule tracking(3A Biol & Artifi memb 4: Transport, Signal transduction,The 49th) Tj ETQq1 1	0.084314	rgBT /Overic
44	2K1512 Enhanced confinement of activated EGF receptor in the plasma membrane compartments revealed by ultra high-speed single-molecule tracking(Cell biology 2,The 48th Annual Meeting of the) Tj ETQq0 0	0 n gB T /Ov	'endock 10 Tf
45	2K1524 Regulation mechanism for signal propagation along the plasma membrane : a single-molecule tracking study(Cell biology 2,The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2011, 51, S93-S94.	0.1	0
46	2K1536 Raft mechanism for regulating Src-family kinases : detection of single-molecule recruitment of a scaffolding transmembrane protein Cbp(Cell biology 2,The 48th Annual Meeting of the Biophysical) Tj ETQqO 0	0 തള്BT /O	veolock 10 Tf
47	Hierarchical mesoscale domain organization of the plasma membrane. Trends in Biochemical Sciences, 2011, 36, 604-615.	7.5	299
48	Full characterization of GPCR monomer–dimer dynamic equilibrium by single molecule imaging. Journal of Cell Biology, 2011, 192, 463-480.	5.2	310
49	2P228 Dimer-monomer equilibrium of a GPCR : direct dimer detection by single-molecule bimolecular fluorescence complementation (SM-BiFC)(The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2010, 50, S122-S123.	0.1	0
50	1P223 1C1340 Mechanism of Lyn kinase recruitment to the IgE receptor cluster : dual-color single-molecule tracking study(Cell biology,Oral Presentations,The 48th Annual Meeting of the) Tj ETQq0 0 0 rgB	T Øverloc	k d 0 Tf 50 2
51	2P235 1C1535 Direct observation of hop diffusion of membrane molecules by developing ultra high-speed single fluorescent-molecule imaging(The 48th Annual Meeting of the Biophysical Society of) Tj ETQq1	1@17843	14∂rgBT /Ov∈
52	3P212 Single-molecule tracking of PKC received and transferred by diffusing small antennas of signal-induced diacylglycerol(Cell biology,The 48th Annual Meeting of the Biophysical Society of) Tj ETQq0 0 0 rg	BTO/Overlo	clo10 Tf 50
53	1P236 1I1340 Reexamining lipid microdomains and compartments in the plasma membrane by single lipid-molecule tracking(Biol & Artifi memb.:Structure & Property,Oral Presentations,The 48th) Tj ETQq1	1 @. 78431	L4orgBT /Ove
54	3P199 NMDA receptor is recruited to the synapse by two parallel pathways : exocytosis and lateral diffusion in the plasma membrane.(Cell biology,The 48th Annual Meeting of the Biophysical Society of) Tj ETQqO	0 0.1 gBT /(Oværlock 10

#	Article	IF	CITATIONS
55	Hierarchical organization of the plasma membrane: Investigations by singleâ€molecule tracking vs. fluorescence correlation spectroscopy. FEBS Letters, 2010, 584, 1814-1823.	2.8	157
56	Membrane molecules mobile even after chemical fixation. Nature Methods, 2010, 7, 865-866.	19.0	287
57	1P-149 Synaptic NMDA receptor recycling by the concerted actions of endocytosis/exocytosis and lateral diffusion in the plasma membrane(Cell biology, The 47th Annual Meeting of the Biophysical) Tj ETQq1 1 0.	7 8 /41814 r	gBō /Overloc
58	Both MHC Class II and its GPI-Anchored Form Undergo Hop Diffusion as Observed by Single-Molecule Tracking. Biophysical Journal, 2008, 95, 435-450.	0.5	109
59	2S2-2 Three dimensional interplay of the membrane skeleton with the plasma membrane as visualized by freeze-etch electron tomography(2S2 Interactions between the cell membrane and the actin) Tj ETQq1 1 0.7843	14.rgBT /C	Overlock 10
60	2P-227 Direct observations of the recruitment of single Lyn kinase molecules to IgE receptor clusters by single fluorescent-molecule tracking(The 46th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2008, 48, S110.	0.1	0
61	3P-055 Detection of transient arrest of lateral diffusion of membrane molecules in single-molecule tracking trajectories 2(The 46th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2008, 48, S136.	0.1	0
62	2P-204 Chemical fixation fails to fix raft-associated molecules : a single-molecule tracking of their diffusion in the plasma membrane(The 46th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2008, 48, S106.	0.1	0
63	GPI-anchored receptor clusters transiently recruit Lyn and Gα for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. Journal of Cell Biology, 2007, 177, 717-730.	5.2	292
64	Dynamic recruitment of phospholipase Cγ at transiently immobilized GPI-anchored receptor clusters induces IP3–Ca2+ signaling: single-molecule tracking study 2. Journal of Cell Biology, 2007, 177, 731-742.	5.2	206
65	2P241 Microdomains and compartments in the smooth-muscle cell membrane : single-molecule tracking of phospholopids(Cell biological problems-adhesion, motility, cytoskeleton, signaling, and) Tj ETQq1 1 0.	.7 84 814 r	gBJ /Overloc
66	2P310 Detectability of stimulation-induced transient arrest of lateral diffusion (STALL) of membrane molecules in single-molecule trajectories(Native and artificial biomembranes-signal) Tj ETQq0 0 0 rgBT /Overlock	100Tf 50 2	970Td (trans
67	CPI-anchored receptor clusters transiently recruit Lyn and Gα for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. Journal of Experimental Medicine, 2007, 204, i18-i18.	8.5	0
68	S1e1-5 Raft and non-raft molecules undergo very similar diffusion in the time scales between 25 microseconds and 2.5 seconds(S1-e1: "Unraveling the membrane microdomains using new biophysical) Tj ETQq0	OcongBT	/Overlock 10
69	Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography. Journal of Cell Biology, 2006, 174, 851-862.	5.2	343
70	Single-Molecule Imaging of Diffusion, Recruitment, and Activation of Signaling Molecules in Living Cells. , 2005, , 123-152.		6
71	Single-molecule tracking of membrane molecules: plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules. Seminars in Immunology, 2005, 17, 3-21.	5.6	211
72	Rapid Hop Diffusion of a G-Protein-Coupled Receptor in the Plasma Membrane as Revealed by Single-Molecule Techniques. Biophysical Journal, 2005, 88, 3659-3680.	0.5	247

Takahiro K Fujiwara

#	Article	IF	CITATIONS
73	Fluorescence Imaging for Monitoring the Colocalization of Two Single Molecules in Living Cells. Biophysical Journal, 2005, 88, 2126-2136.	0.5	154
74	Detection of Non-Brownian Diffusion in the Cell Membrane in Single Molecule Tracking. Biophysical Journal, 2005, 88, 2266-2277.	0.5	277
75	Paradigm Shift of the Plasma Membrane Concept from the Two-Dimensional Continuum Fluid to the Partitioned Fluid: High-Speed Single-Molecule Tracking of Membrane Molecules. Annual Review of Biophysics and Biomolecular Structure, 2005, 34, 351-378.	18.3	1,010
76	Single-molecule imaging analysis of Ras activation in living cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7317-7322.	7.1	359
77	Ultrafine Membrane Compartments for Molecular Diffusion as Revealed by Single Molecule Techniques. Biophysical Journal, 2004, 86, 4075-4093.	0.5	400
78	Mechanism of Lck Recruitment to the T-Cell Receptor Cluster as Studied by Single-Molecule-Fluorescence Video Imaging. ChemPhysChem, 2003, 4, 620-626.	2.1	63
79	Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization. Nature Cell Biology, 2003, 5, 626-632.	10.3	324
80	The fence and picket structure of the plasma membrane of live cells as revealed by single molecule techniques (Review). Molecular Membrane Biology, 2003, 20, 13-18.	2.0	187
81	Phospholipids undergo hop diffusion in compartmentalized cell membrane. Journal of Cell Biology, 2002, 157, 1071-1082.	5.2	872
82	Relationship of Lipid Rafts to Transient Confinement Zones Detected by Single Particle Tracking. Biophysical Journal, 2002, 82, 274-284.	0.5	404
83	Chapter 10 Application of Laser Tweezers to Studies of the Fences and Tethers of the Membrane Skeleton that Regulate the Movements of Plasma Membrane Proteins. Methods in Cell Biology, 1997, 55, 173-194.	1.1	26
84	Paradigm Shift of the Molecular Dynamics Concept in the Cell Membrane: High-Speed Single-Molecule Tracking Revealed the Partitioning of the Cell Membrane. , 0, , 545-574.		7