Haibo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2758576/publications.pdf

Version: 2024-02-01

257450 276875 2,094 41 41 24 citations h-index g-index papers 41 41 41 2388 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	3 D Hierarchical Porous Carbon for Supercapacitors Prepared from Lignin through a Facile Templateâ€Free Method. ChemSusChem, 2015, 8, 2114-2122.	6.8	247
2	Recent developments and advances in boron-doped diamond electrodes for electrochemical oxidation of organic pollutants. Separation and Purification Technology, 2019, 212, 802-821.	7.9	233
3	Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications. Energy, 2017, 128, 618-625.	8.8	160
4	Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications. Journal of Colloid and Interface Science, 2018, 530, 338-344.	9.4	155
5	A green technology for the preparation of high capacitance rice husk-based activated carbon. Journal of Cleaner Production, 2016, 112, 1190-1198.	9.3	154
6	Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance. Electrochimica Acta, 2015, 176, 1136-1142.	5.2	135
7	Hierarchical porous carbon based on the self-templating structure of rice husk for high-performance supercapacitors. RSC Advances, 2015, 5, 19294-19300.	3.6	107
8	Lignin Derived Porous Carbons: Synthesis Methods and Supercapacitor Applications. Small Methods, 2021, 5, e2100896.	8.6	80
9	Hydrophobic networked PbO2 electrode for electrochemical oxidation of paracetamol drug and degradation mechanism kinetics. Chemosphere, 2018, 193, 89-99.	8.2	70
10	On the electrochemical origin of the enhanced charge acceptance of the lead–carbon electrode. Journal of Materials Chemistry A, 2015, 3, 4399-4404.	10.3	61
11	Mechanism and kinetics of the electrocatalytic hydrogenation of furfural to furfuryl alcohol. Journal of Electroanalytical Chemistry, 2017, 804, 248-253.	3.8	51
12	Performance characterization of Ti substrate lead dioxide electrode with different solid solution interlayers. Journal of Materials Science, 2012, 47, 6709-6715.	3.7	42
13	Application of porous boron-doped diamond electrode towards electrochemical mineralization of triphenylmethane dye. Journal of Electroanalytical Chemistry, 2016, 775, 292-298.	3.8	41
14	Highly reversible lead-carbon battery anode with lead grafting on the carbon surface. Journal of Energy Chemistry, 2018, 27, 1674-1683.	12.9	38
15	Enhanced electrochemical oxidation of organic pollutants by boron-doped diamond based on porous titanium. Separation and Purification Technology, 2015, 149, 124-131.	7.9	36
16	Electrodeposition of three-dimensional ZnO@MnO2 core–shell nanocables as high-performance electrode material for supercapacitors. Energy, 2015, 93, 1259-1266.	8.8	34
17	Hierarchical porous carbon@PbO1-x composite for high-performance lead-carbon battery towards renewable energy storage. Energy, 2020, 193, 116675.	8.8	34
18	Optimized lead carbon composite for enhancing the performance of lead-carbon battery under HRPSoC operation. Journal of Electroanalytical Chemistry, 2019, 832, 266-274.	3.8	31

#	Article	IF	Citations
19	Improved electrochemical performance of boron-doped diamond electrode depending on the structure of titanium substrate. Journal of Electroanalytical Chemistry, 2015, 758, 170-177.	3.8	30
20	Effect of SnO ₂ â€6b ₂ O ₅ Interlayer on Electrochemical Performances of a Tiâ€6ubstrate Lead Dioxide Electrode. Chinese Journal of Chemistry, 2012, 30, 2059-2065.	4.9	26
21	A composite electrodeposited PbO ₂ /SnO ₂ positive electrode material for hybrid supercapacitors. RSC Advances, 2015, 5, 98983-98989.	3.6	26
22	Significance of PbO deposition ratio in activated carbon-based lead-carbon composites for lead-carbon battery under high-rate partial-state-of-charge operation. Electrochimica Acta, 2020, 338, 135868.	5.2	26
23	Preparation of C/SnO2 composite with rice husk-based porous carbon carrier loading ultrasmall SnO2 nanoparticles for anode in lithium-ion batteries. Journal of Electroanalytical Chemistry, 2020, 857, 113634.	3.8	25
24	Effects of nano-SiO2 doped PbO2 as the positive electrode on the performance of lead-carbon hybrid capacitor. Journal of Colloid and Interface Science, 2020, 574, 377-384.	9.4	24
25	Influence of F ^{â€} doping on the microstructure, surface morphology and electrochemical properties of the lead dioxide electrode. Surface and Interface Analysis, 2013, 45, 715-721.	1.8	22
26	Hierarchical Porous Carbon Prepared through Sustainable CuCl ₂ Activation of Rice Husk for Highâ€Performance Supercapacitors. ChemistrySelect, 2019, 4, 2314-2319.	1.5	22
27	KOH direct activation for preparing activated carbon fiber from polyacrylonitrile-based pre-oxidized fiber. Chemical Research in Chinese Universities, 2014, 30, 441-446.	2.6	21
28	The application of rice husk-based porous carbon in positive electrodes of lead acid batteries. Journal of Energy Storage, 2020, 30, 101392.	8.1	21
29	Effect of polyvinyl alcohol/nano-carbon colloid on the electrochemical performance of negative plates of lead acid battery. Journal of Electroanalytical Chemistry, 2019, 832, 152-157.	3.8	20
30	Enhanced electrochemical supercapacitor performance with a three-dimensional porous boron-doped diamond film. New Journal of Chemistry, 2019, 43, 18813-18822.	2.8	16
31	Facile Self-templating Melting Route Preparation of Biomass-derived Hierarchical Porous Carbon for Advanced Supercapacitors. Chemical Research in Chinese Universities, 2018, 34, 983-988.	2.6	15
32	Electrochemical degradation of herbicide diuron on flow-through electrochemical reactor and CFD hydrodynamics simulation. Separation and Purification Technology, 2020, 251, 117284.	7.9	13
33	Longâ€Life Leadâ€Acid Battery for Highâ€Rate Partialâ€Stateâ€ofâ€Charge Operation Enabled by a Riceâ€Huskâ Activated Carbon Negative Electrode Additive. ChemistrySelect, 2020, 5, 2551-2558.	€Based	12
34	Template-free synthesis of lignin-derived 3D hierarchical porous carbon for supercapacitors. Journal of Materials Science: Materials in Electronics, 2021, 32, 7009-7018.	2.2	12
35	Feasibility and advantage of biofilm-electrode reactor for phenol degradation. Journal of Environmental Sciences, 2009, 21, 1181-1185.	6.1	10
36	Anodic preparation and supercapacitive performance of nano-Co3O4/MnO2composites. RSC Advances, 2014, 4, 64675-64682.	3.6	10

Наіво

#	Article	IF	CITATIONS
37	Anodic co-electrodeposition of hierarchical porous nano-SiO2+PbO2 composite for enhanced performance of advanced lead-carbon batteries. Journal of Energy Storage, 2021, 35, 102285.	8.1	8
38	Thermal transfer during the activation process in LiSi/FeS2 thermal batteries. Chemical Research in Chinese Universities, 2016, 32, 665-668.	2.6	7
39	Design principles of lead-carbon additives toward better lead-carbon batteries. Current Opinion in Electrochemistry, 2021, 30, 100802.	4.8	7
40	Design of diamond anodes in electrochemical degradation of organic pollutants. Current Opinion in Electrochemistry, 2022, 32, 100878.	4.8	7
41	The AMWCNTs supported porous nanocarbon composites for high-performance supercapacitor. Materials Research Bulletin, 2013, 48, 4491-4498.	5.2	5