B M Jakosky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2758180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Emirates Mars Mission. Space Science Reviews, 2022, 218, 4.	8.1	29
2	Discrete Aurora on the Nightside of Mars: Occurrence Location and Probability. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	6
3	Energetic Neutral Atoms near Mars: Predicted Distributions Based on MAVEN Measurements. Astrophysical Journal, 2022, 927, 11.	4.5	2
4	The Origins of Longâ€Term Variability in Martian Upper Atmospheric Densities. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	6
5	How did Mars lose its atmosphere and water?. Physics Today, 2022, 75, 62-63.	0.3	0
6	Formation Mechanisms of the Molecular Ion Polar Plume and Its Contribution to Ion Escape From Mars. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	4
7	In‣itu Measurements of Ion Density in the Martian Ionosphere: Underlying Structure and Variability Observed by the MAVEN‣TATIC Instrument. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	16
8	Atmospheric Loss to Space and the History of Water on Mars. Annual Review of Earth and Planetary Sciences, 2021, 49, 71-93.	11.0	35
9	Rate coefficients for the reactions of CO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e4795" altimg="si391.svg"><mml:msubsup><mml:mrow /><mml:mrow><mml:mo>+</mml:mo></mml:mrow>+<td>2.5 nsubsup>+</td><td>15 /</td></mml:mrow </mml:msubsup></mml:math 	2.5 nsubsup>+	15 /
10	Or Lessons from MAVEN at Mars. Icarus, 2021, 350, 114106. Tidal Effects on the Longitudinal Structures of the Martian Thermosphere and Topside Ionosphere Observed by MAVEN. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028562.	2.4	12
11	Martian Hydrated Minerals: A Significant Water Sink. Journal of Geophysical Research E: Planets, 2021, 126, e2019JE006351.	3.6	19
12	Dust Stormâ€Enhanced Gravity Wave Activity in the Martian Thermosphere Observed by MAVEN and Implication for Atmospheric Escape. Geophysical Research Letters, 2021, 48, e2020GL092095.	4.0	33
13	Quick-look estimates of ionospheric properties from radio occultation data. Advances in Space Research, 2021, 68, 2038-2049.	2.6	1
14	Estimate of the D/H Ratio in the Martian Upper Atmosphere from the Low Spectral Resolution Mode of MAVEN/IUVS. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006814.	3.6	6
15	Test Particle Model Predictions of SEP Electron Transport and Precipitation at Mars. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029132.	2.4	4
16	Martian water loss to space enhanced by regional dust storms. Nature Astronomy, 2021, 5, 1036-1042.	10.1	40
17	Martian Crustal Field Influence on O ⁺ and O ₂ ⁺ Escape as Measured by MAVEN. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029234.	2.4	14
18	Discrete Aurora on Mars: Insights Into Their Distribution and Activity From MAVEN/IUVS Observations. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029428.	2.4	20

#	Article	IF	CITATIONS
19	Emirates Mars Mission Characterization of Mars Atmosphere Dynamics and Processes. Space Science Reviews, 2021, 217, .	8.1	23
20	In Situ Measurements of Thermal Ion Temperature in the Martian Ionosphere. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029531.	2.4	17
21	Mars Dust Storm Effects in the Ionosphere and Magnetosphere and Implications for Atmospheric Carbon Loss. Journal of Geophysical Research: Space Physics, 2020, 125, no.	2.4	23
22	Effect of the 2018 Martian Global Dust Storm on the CO ₂ Density in the Lower Nightside Thermosphere Observed From MAVEN/IUVS Lymanâ€Alpha Absorption. Geophysical Research Letters, 2020, 47, e2019GL082889.	4.0	13
23	Vertical Propagation of Wave Perturbations in the Middle Atmosphere on Mars by MAVEN/IUVS. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006481.	3.6	18
24	Influence of the Solar Wind Dynamic Pressure on the Ion Precipitation: MAVEN Observations and Simulation Results. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028183.	2.4	6
25	Foreshock Cavities at Venus and Mars. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028023.	2.4	7
26	Seasonal and Latitudinal Variations of Dayside N ₂ /CO ₂ Ratio in the Martian Thermosphere Derived From MAVEN IUVS Observations. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006378.	3.6	8
27	Variations in Nightside Magnetic Field Topology at Mars. Geophysical Research Letters, 2020, 47, e2020GL088921.	4.0	15
28	The Influence of Interplanetary Magnetic Field Direction on Martian Crustal Magnetic Field Topology. Geophysical Research Letters, 2020, 47, e2020GL087757.	4.0	25
29	First Detection of Kilometerâ€Scale Density Irregularities in the Martian Ionosphere. Geophysical Research Letters, 2020, 47, e2020GL090906.	4.0	7
30	The Magnetic Structure of the Subsolar MPB Current Layer From MAVEN Observations: Implications for the Hall Electric Force. Geophysical Research Letters, 2020, 47, e2020GL089230.	4.0	6
31	Navigation Design and Operations of MAVEN Aerobraking. , 2020, , .		1
32	Lyα Observations of Comet C/2013 A1 (Siding Spring) Using MAVEN IUVS Echelle. Astronomical Journal, 2020, 160, 10.	4.7	3
33	MAVEN Orbital Trajectory Analysis: Design and Implementation of Lander Relay Support. , 2020, , .		1
34	Constantly forming sporadic E-like layers and rifts in the Martian ionosphere and their implications for Earth. Nature Astronomy, 2020, 4, 486-491.	10.1	14
35	Effects of Global and Regional Dust Storms on the Martian Hot O Corona and Photochemical Loss. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027115.	2.4	15
36	The MAVEN Radio Occultation Science Experiment (ROSE). Space Science Reviews, 2020, 216, 1.	8.1	26

#	Article	IF	CITATIONS
37	The global current systems of the Martian induced magnetosphere. Nature Astronomy, 2020, 4, 979-985.	10.1	55
38	Influence of Extreme Ultraviolet Irradiance Variations on the Precipitating Ion Flux From MAVEN Observations. Geophysical Research Letters, 2019, 46, 7761-7768.	4.0	5
39	Mars Upper Atmospheric Responses to the 10 September 2017 Solar Flare: A Global, Timeâ€Đependent Simulation. Geophysical Research Letters, 2019, 46, 9334-9343.	4.0	19
40	Statistical Study of Heavy Ion Outflows From Mars Observed in the Martianâ€induced Magnetotail by MAVEN. Journal of Geophysical Research: Space Physics, 2019, 124, 5482-5497.	2.4	29
41	A Fast Fermi Acceleration at Mars Bow Shock. Journal of Geophysical Research: Space Physics, 2019, 124, 5528-5538.	2.4	9
42	Recovery Timescales of the Dayside Martian Magnetosphere to IMF Variability. Geophysical Research Letters, 2019, 46, 10977-10986.	4.0	15
43	Importance of Ambipolar Electric Field in Driving Ion Loss From Mars: Results From a Multifluid MHD Model With the Electron Pressure Equation Included. Journal of Geophysical Research: Space Physics, 2019, 124, 9040-9057.	2.4	27
44	Expansion and Shrinking of the Martian Topside Ionosphere. Journal of Geophysical Research: Space Physics, 2019, 124, 9725-9738.	2.4	16
45	Magnetic Field in the Martian Magnetosheath and the Application as an IMF Clock Angle Proxy. Journal of Geophysical Research: Space Physics, 2019, 124, 4295-4313.	2.4	16
46	The CO2 inventory on Mars. Planetary and Space Science, 2019, 175, 52-59.	1.7	29
47	Seasonal Variability of Deuterium in the Upper Atmosphere of Mars. Journal of Geophysical Research: Space Physics, 2019, 124, 2152-2164.	2.4	13
48	Traveling Ionospheric Disturbances at Mars. Geophysical Research Letters, 2019, 46, 4554-4563.	4.0	13
49	Ionospheric Ambipolar Electric Fields of Mars and Venus: Comparisons Between Theoretical Predictions and Direct Observations of the Electric Potential Drop. Geophysical Research Letters, 2019, 46, 1168-1176.	4.0	21
50	First In Situ Evidence of Mars Nonthermal Exosphere. Geophysical Research Letters, 2019, 46, 4144-4150.	4.0	7
51	The Influence of Solar Wind Pressure on Martian Crustal Magnetic Field Topology. Geophysical Research Letters, 2019, 46, 2347-2354.	4.0	35
52	MAVEN Case Studies of Plasma Dynamics in Lowâ€Altitude Crustal Magnetic Field at Mars 1: Dayside Ion Spikes Associated With Radial Crustal Magnetic Fields. Journal of Geophysical Research: Space Physics, 2019, 124, 1239-1261.	2.4	6
53	Locally Generated ULF Waves in the Martian Magnetosphere: MAVEN Observations. Journal of Geophysical Research: Space Physics, 2019, 124, 8707-8726.	2.4	8
54	Mars Water and D/H Evolution From 3.3 Ga to Present. Journal of Geophysical Research E: Planets, 2019, 124, 3344-3353.	3.6	13

Β Μ Јакоѕку

Article	IF	CITATIONS
Proton Aurora on Mars: A Dayside Phenomenon Pervasive in Southern Summer. Journal of Geophysical Research: Space Physics, 2019, 124, 10533-10548.	2.4	24
Global circulation of Mars' upper atmosphere. Science, 2019, 366, 1363-1366.	12.6	20
Variability of Precipitating Ion Fluxes During the September 2017 Event at Mars. Journal of Geophysical Research: Space Physics, 2019, 124, 420-432.	2.4	6
Correlations between enhanced electron temperatures and electric field wave power in the Martian ionosphere. Geophysical Research Letters, 2018, 45, 493-501.	4.0	9
First Ionospheric Results From the MAVEN Radio Occultation Science Experiment (ROSE). Journal of Geophysical Research: Space Physics, 2018, 123, 4171-4180.	2.4	35
Oneâ€Hertz Waves at Mars: MAVEN Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 3460-3476.	2.4	10
Seasonal Variability of Neutral Escape from Mars as Derived From MAVEN Pickup Ion Observations. Journal of Geophysical Research E: Planets, 2018, 123, 1192-1202.	3.6	38
Evidence for Neutralsâ€Foreshock Electrons Impact at Mars. Geophysical Research Letters, 2018, 45, 3768-3774.	4.0	12
The Propitious Role of Solar Energetic Particles in the Origin of Life. Astrophysical Journal, 2018, 853, 10.	4.5	29
Thermospheric Expansion Associated With Dust Increase in the Lower Atmosphere on Mars Observed by MAVEN/NGIMS. Geophysical Research Letters, 2018, 45, 2901-2910.	4.0	27
Magnetic Reconnection on Dayside Crustal Magnetic Fields at Mars: MAVEN Observations. Geophysical Research Letters, 2018, 45, 4550-4558.	4.0	44
Solar Wind Deflection by Mass Loading in the Martian Magnetosheath Based on MAVEN Observations. Geophysical Research Letters, 2018, 45, 2574-2579.	4.0	21
On Mars's Atmospheric Sputtering After MAVEN's First Martian Year of Measurements. Geophysical Research Letters, 2018, 45, 4685-4691.	4.0	25
The Morphology of the Solar Wind Magnetic Field Draping on the Dayside of Mars and Its Variability. Geophysical Research Letters, 2018, 45, 3356-3365.	4.0	39
The LatHyS database for planetary plasma environment investigations: Overview and a case study of data/model comparisons. Planetary and Space Science, 2018, 150, 13-21.	1.7	10
Reconnection in the Martian Magnetotail: Hallâ€ <scp>MHD</scp> With Embedded Particleâ€inâ€Cell Simulations. Journal of Geophysical Research: Space Physics, 2018, 123, 3742-3763.	2.4	20
Effects of the Crustal Magnetic Fields and Changes in the IMF Orientation on the Magnetosphere of Mars: MAVEN Observations and LatHyS Results. Journal of Geophysical Research: Space Physics, 2018, 123, 5315-5333.	2.4	21
Comparison of Global Martian Plasma Models in the Context of MAVEN Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 3714-3726.	2.4	15
	Arricle Proton Aurora on Mars: A Dayside Phenomenon Pervasive in Southern Summer, Journal of Geophysical Research: Space Physics, 2019, 124, 10533-10548. Clobal circulation of Marsit ^{FM} upper atmosphere. Science, 2019, 366, 1363-1366. Variability of Percipitating Ion Flaxes During the September 2017 Event at Mars. Journal of Geophysical Research: Space Physics, 2019, 124, 420-432. Correlations between enhanced electron temperatures and electric field wave power in the Martian Ionosphere. Geophysical Research: Extens, 2018, 45, 493-501. First Ionospheric Results From the MAVEN Radio Occultation Science Experiment (ROSE). Journal of Geophysical Research: Space Physics, 2018, 122, 4121-4180. Ones/Hertz Waves at Mars: MAVEN Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 3460-3476. Seasonal Variability of Neutral Escape from Mars as Derived From MAVEN Pickup Ion Observations. Journal of Geophysical Research: Experiment Expansion Associated With Dust Increase in the Origin of Life. Astrophysical Journal, 2018, 853, 10. Ther Propriotous Role of Solar Energetic Particles in the Origin of Life. Astrophysical Journal, 2018, 853, 10. Thermospheric Expansion Associated With Dust Increase in the Lower Atmosphere on Mars Observed by MAVENNIMMS. Geophysical Research Letters, 2018, 45, 2574-257. Solar Wind Deflection by Mass Loading in the Martian Magneticsheath Based on MAVEN Observations. Geophysical Research Letters, 2018, 45, 2574-257. On Mars's Atmospheric Suputering After MAVEN's First Martian Year of Measurements. Geophysical Research Letters, 2018, 45, 3356-3365.	Article IF Proton Aurora on Marcs A Dayside Phenomenon Pervasive in Southern Summer, Journal of Geophysical 2.4 Clobal circulation of Marcs&CPU upper atmosphere. Science, 2019, 366, 1363-1366. 12.6 Variability of Precipitating Ion Fluxes During the September 2017 Event at Mars, Journal of Geophysical 2.4 Correlations between enhanced electron temperatures and electric field wave power in the Martian bonsphere. Geophysical Research Letters, 2018, 45, 493-501. 4.0 Correlations between enhanced electron temperatures and electric field wave power in the Martian bonsphere. Ceophysical Research Letters, 2018, 45, 493-501. 2.4 Correlations between enhanced electron temperatures and electric field wave power in the Martian bonsphere. Ceophysical Research Letters, 2018, 45, 493-501. 2.4 One&Hertz Waves at Wars: MAVEN Observation Science Experiment (ROSE). Journal of Ceophysical Research: Space Physics, 2018. 2.4 Seasonal Variability of Neutral Escape from Mars as Derived From MAVEN Pickup Ion Observations. 9.6 Evidence for Neutrals&Foreshock Electrons Impact at Mars. Geophysical Research Letters, 2018, 45, 3768-3774. 4.0 Magnetic Reconsection on Dayside Crustal Magnetic Fields at Mars: MAVEN Observations. Geophysical Research Letters, 2018, 45, 4550-4558. 4.0 Solar Wind Deflection by Mass Loading in the Martian Magnetosheath Based on MAVEN Observations. 4.0 Physical Research Letters, 2018, 45, 2574-2579. 4.0 Comphysical Research Letters, 2018, 45, 2574-2579. 4.0

#	Article	IF	CITATIONS
73	Solar Wind Induced Waves in the Skies of Mars: Ionospheric Compression, Energization, and Escape Resulting From the Impact of Ultralow Frequency Magnetosonic Waves Generated Upstream of the Martian Bow Shock. Journal of Geophysical Research: Space Physics, 2018, 123, 7241-7256.	2.4	32
74	Structure and Variability of the Martian Ion Composition Boundary Layer. Journal of Geophysical Research: Space Physics, 2018, 123, 8439-8458.	2.4	24
75	Evidence for Crustal Magnetic Field Control of Ions Precipitating Into the Upper Atmosphere of Mars. Journal of Geophysical Research: Space Physics, 2018, 123, 8572-8586.	2.4	16
76	Mars H Escape Rates Derived From MAVEN/IUVS Lyman Alpha Brightness Measurements and Their Dependence on Model Assumptions. Journal of Geophysical Research E: Planets, 2018, 123, 2192-2210.	3.6	42
77	Variability of Martian Turbopause Altitudes. Journal of Geophysical Research E: Planets, 2018, 123, 2939-2957.	3.6	30
78	An Artificial Neural Network for Inferring Solar Wind Proxies at Mars. Geophysical Research Letters, 2018, 45, 10,855.	4.0	21
79	Global Aurora on Mars During the September 2017 Space Weather Event. Geophysical Research Letters, 2018, 45, 7391-7398.	4.0	44
80	Mars Thermospheric Variability Revealed by MAVEN EUVM Solar Occultations: Structure at Aphelion and Perihelion and Response to EUV Forcing. Journal of Geophysical Research E: Planets, 2018, 123, 2248-2269.	3.6	26
81	Modeling Martian Atmospheric Losses over Time: Implications for Exoplanetary Climate Evolution and Habitability. Astrophysical Journal Letters, 2018, 859, L14.	8.3	51
82	Cold Dense Ion Outflow Observed in the Martianâ€induced Magnetotail by MAVEN. Geophysical Research Letters, 2018, 45, 5283-5289.	4.0	22
83	The Impact and Solar Wind Proxy of the 2017 September ICME Event at Mars. Geophysical Research Letters, 2018, 45, 7248-7256.	4.0	29
84	Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, 2018, 315, 146-157.	2.5	216
85	MAVEN Observations of Solar Windâ€Driven Magnetosonic Waves Heating the Martian Dayside Ionosphere. Journal of Geophysical Research: Space Physics, 2018, 123, 4129-4149.	2.4	40
86	Martian ionosphere observed by MAVEN. 3. Influence of solar wind and IMF on upper ionosphere. Planetary and Space Science, 2018, 160, 56-65.	1.7	17
87	Inventory of CO2 available for terraforming Mars. Nature Astronomy, 2018, 2, 634-639.	10.1	53
88	The Twisted Configuration of the Martian Magnetotail: MAVEN Observations. Geophysical Research Letters, 2018, 45, 4559-4568.	4.0	66
89	Discovery of a proton aurora at Mars. Nature Astronomy, 2018, 2, 802-807.	10.1	50
90	Significant Space Weather Impact on the Escape of Hydrogen From Mars. Geophysical Research Letters, 2018, 45, 8844-8852.	4.0	29

#	Article	IF	CITATIONS
91	Responses of the Martian Magnetosphere to an Interplanetary Coronal Mass Ejection: MAVEN Observations and LatHyS Results. Geophysical Research Letters, 2018, 45, 7891-7900.	4.0	19
92	Observations and Impacts of the 10 September 2017 Solar Events at Mars: An Overview and Synthesis of the Initial Results. Geophysical Research Letters, 2018, 45, 8871-8885.	4.0	77
93	Martian Thermospheric Response to an X8.2 Solar Flare on 10 September 2017 as Seen by MAVEN/IUVS. Geophysical Research Letters, 2018, 45, 7312-7319.	4.0	24
94	MAVEN measured oxygen and hydrogen pickup ions: Probing the Martian exosphere and neutral escape. Journal of Geophysical Research: Space Physics, 2017, 122, 3689-3706.	2.4	55
95	Implications of MAVEN's planetographic coordinate system for comparisons to other recent Mars orbital missions. Journal of Geophysical Research: Space Physics, 2017, 122, 802-807.	2.4	8
96	Longitudinal structures in Mars' upper atmosphere as observed by MAVEN/NGIMS. Journal of Geophysical Research: Space Physics, 2017, 122, 1258-1268.	2.4	32
97	Variability of D and H in the Martian upper atmosphere observed with the MAVEN IUVS echelle channel. Journal of Geophysical Research: Space Physics, 2017, 122, 2336-2344.	2.4	64
98	Martian lowâ€altitude magnetic topology deduced from MAVEN/SWEA observations. Journal of Geophysical Research: Space Physics, 2017, 122, 1831-1852.	2.4	107
99	Mars thermosphere as seen in MAVEN accelerometer data. Journal of Geophysical Research: Space Physics, 2017, 122, 3798-3814.	2.4	60
100	MAVEN and the total electron content of the Martian ionosphere. Journal of Geophysical Research: Space Physics, 2017, 122, 3526-3537.	2.4	12
101	Photochemical escape of oxygen from Mars: First results from MAVEN in situ data. Journal of Geophysical Research: Space Physics, 2017, 122, 3815-3836.	2.4	106
102	Martian electron foreshock from MAVEN observations. Journal of Geophysical Research: Space Physics, 2017, 122, 1531-1541.	2.4	12
103	Characterization of turbulence in the Mars plasma environment with MAVEN observations. Journal of Geophysical Research: Space Physics, 2017, 122, 656-674.	2.4	30
104	Structure, dynamics, and seasonal variability of the Marsâ€solar wind interaction: MAVEN Solar Wind Ion Analyzer inâ€flight performance and science results. Journal of Geophysical Research: Space Physics, 2017, 122, 547-578.	2.4	191
105	MAVEN observations on a hemispheric asymmetry of precipitating ions toward the Martian upper atmosphere according to the upstream solar wind electric field. Journal of Geophysical Research: Space Physics, 2017, 122, 1083-1101.	2.4	19
106	Nightside ionosphere of Mars: Composition, vertical structure, and variability. Journal of Geophysical Research: Space Physics, 2017, 122, 4712-4725.	2.4	46
107	Seasonal variability of Martian ion escape through the plume and tail from MAVEN observations. Journal of Geophysical Research: Space Physics, 2017, 122, 4009-4022.	2.4	66
108	Unique, nonâ€Earthlike, meteoritic ion behavior in upper atmosphere of Mars. Geophysical Research Letters, 2017, 44, 3066-3072.	4.0	30

#	Article	IF	CITATIONS
109	MAVEN observations of the solar cycle 24 space weather conditions at Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 2768-2794.	2.4	78
110	Survey of magnetic reconnection signatures in the Martian magnetotail with MAVEN. Journal of Geophysical Research: Space Physics, 2017, 122, 5114-5131.	2.4	40
111	Martian magnetic storms. Journal of Geophysical Research: Space Physics, 2017, 122, 6185-6209.	2.4	40
112	Martian mesospheric cloud observations by IUVS on MAVEN: Thermal tides coupled to the upper atmosphere. Geophysical Research Letters, 2017, 44, 4709-4715.	4.0	23
113	MAVEN NGIMS observations of atmospheric gravity waves in the Martian thermosphere. Journal of Geophysical Research: Space Physics, 2017, 122, 2310-2335.	2.4	88
114	He bulge revealed: He and CO ₂ diurnal and seasonal variations in the upper atmosphere of Mars as detected by MAVEN NGIMS. Journal of Geophysical Research: Space Physics, 2017, 122, 2564-2573.	2.4	52
115	Detection of a persistent meteoric metal layer in the Martian atmosphere. Nature Geoscience, 2017, 10, 401-404.	12.9	52
116	Nitric oxide nightglow and Martian mesospheric circulation from MAVEN/IUVS observations and LMDâ€MGCM predictions. Journal of Geophysical Research: Space Physics, 2017, 122, 5782-5797.	2.4	36
117	MAVEN observations of tail current sheet flapping at Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 4308-4324.	2.4	37
118	Mars' atmospheric history derived from upper-atmosphere measurements of ³⁸ Ar/ ³⁶ Ar. Science, 2017, 355, 1408-1410.	12.6	183
119	The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results. Journal of Geophysical Research: Space Physics, 2017, 122, 2748-2767.	2.4	116
120	The structure and variability of Mars dayside thermosphere from MAVEN NGIMS and IUVS measurements: Seasonal and solar activity trends in scale heights and temperatures. Journal of Geophysical Research: Space Physics, 2017, 122, 1296-1313.	2.4	124
121	MAVEN observations of a giant ionospheric flux rope near Mars resulting from interaction between the crustal and interplanetary draped magnetic fields. Journal of Geophysical Research: Space Physics, 2017, 122, 828-842.	2.4	21
122	MAVEN observations of dayside peak electron densities in the ionosphere of Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 891-906.	2.4	33
123	Hot oxygen escape from Mars: Simple scaling with solar EUV irradiance. Journal of Geophysical Research: Space Physics, 2017, 122, 1102-1116.	2.4	40
124	Spontaneous hot flow anomalies at Mars and Venus. Journal of Geophysical Research: Space Physics, 2017, 122, 9910-9923.	2.4	15
125	The Martian Photoelectron Boundary as Seen by MAVEN. Journal of Geophysical Research: Space Physics, 2017, 122, 10,472.	2.4	28
126	Statistical Study of Relations Between the Induced Magnetosphere, Ion Composition, and Pressure Balance Boundaries Around Mars Based On MAVEN Observations. Journal of Geophysical Research: Space Physics, 2017, 122, 9723-9737.	2.4	44

#	Article	IF	CITATIONS
127	The role of the electron temperature on ion loss from Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 8375-8390.	2.4	14
128	lon escape rates from Mars: Results from hybrid simulations compared to MAVEN observations. Journal of Geophysical Research: Space Physics, 2017, 122, 8391-8408.	2.4	15
129	Effects of solar irradiance on the upper ionosphere and oxygen ion escape at Mars: MAVEN observations. Journal of Geophysical Research: Space Physics, 2017, 122, 7142-7152.	2.4	30
130	Electric and magnetic variations in the nearâ€Mars environment. Journal of Geophysical Research: Space Physics, 2017, 122, 8536-8559.	2.4	30
131	IUVS echelleâ€mode observations of interplanetary hydrogen: Standard for calibration and reference for cavity variations between Earth and Mars during MAVEN cruise. Journal of Geophysical Research: Space Physics, 2017, 122, 2089-2105.	2.4	16
132	Solar Wind Interaction and Atmospheric Escape. , 2017, , 464-496.		18
133	MAVEN observations of the Mars upper atmosphere, ionosphere, and solar wind interactions. Journal of Geophysical Research: Space Physics, 2017, 122, 9552-9553.	2.4	5
134	The Mars crustal magnetic field control of plasma boundary locations and atmospheric loss: MHD prediction and comparison with MAVEN. Journal of Geophysical Research: Space Physics, 2017, 122, 4117-4137.	2.4	60
135	Statistical analysis of the reflection of incident O ⁺ pickup ions at Mars: MAVEN observations. Journal of Geophysical Research: Space Physics, 2017, 122, 4089-4101.	2.4	11
136	On the Origins of Mars' Exospheric Nonthermal Oxygen Component as Observed by MAVEN and Modeled by HELIOSARES. Journal of Geophysical Research E: Planets, 2017, 122, 2401-2428.	3.6	27
137	Flows, Fields, and Forces in the Marsâ€6olar Wind Interaction. Journal of Geophysical Research: Space Physics, 2017, 122, 11,320.	2.4	64
138	MAVEN Observations of lonospheric Irregularities at Mars. Geophysical Research Letters, 2017, 44, 10,845.	4.0	16
139	The Variability of Atmospheric Deuterium Brightness at Mars: Evidence for Seasonal Dependence. Journal of Geophysical Research: Space Physics, 2017, 122, 10,811.	2.4	15
140	Comparative study of the Martian suprathermal electron depletions based on Mars Global Surveyor, Mars Express, and Mars Atmosphere and Volatile EvolutioN mission observations. Journal of Geophysical Research: Space Physics, 2017, 122, 857-873.	2.4	28
141	The Effect of Solar Wind Variations on the Escape of Oxygen Ions From Mars Through Different Channels: MAVEN Observations. Journal of Geophysical Research: Space Physics, 2017, 122, 11,285.	2.4	44
142	Variations of the Martian plasma environment during the ICME passage on 8 March 2015: A timeâ€dependent MHD study. Journal of Geophysical Research: Space Physics, 2017, 122, 1714-1730.	2.4	40
143	Global distribution and parameter dependences of gravity wave activity in the Martian upper thermosphere derived from MAVEN/NGIMS observations. Journal of Geophysical Research: Space Physics, 2017, 122, 2374-2397.	2.4	66
144	Electric Mars: A large transâ€ŧerminator electric potential drop on closed magnetic field lines above Utopia Planitia. Journal of Geophysical Research: Space Physics, 2017, 122, 2260-2271.	2.4	16

#	Article	IF	CITATIONS
145	Dynamic response of the Martian ionosphere to an interplanetary shock: Mars Express and MAVEN observations. Geophysical Research Letters, 2017, 44, 9116-9123.	4.0	14
146	Ion Heating in the Martian Ionosphere. Journal of Geophysical Research: Space Physics, 2017, 122, 10,612.	2.4	8
147	On the origins of magnetic flux ropes in nearâ€Mars magnetotail current sheets. Geophysical Research Letters, 2017, 44, 7653-7662.	4.0	28
148	A Monte Carlo model of crustal field influences on solar energetic particle precipitation into the Martian atmosphere. Journal of Geophysical Research: Space Physics, 2017, 122, 5653-5669.	2.4	10
149	Simultaneous observations of atmospheric tides from combined in situ and remote observations at Mars from the MAVEN spacecraft. Journal of Geophysical Research E: Planets, 2016, 121, 594-607.	3.6	48
150	Proton cyclotron waves occurrence rate upstream from Mars observed by MAVEN: Associated variability of the Martian upper atmosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 11,113.	2.4	50
151	Effect of the planet shine on the corona: Application to the Martian hot oxygen. Journal of Geophysical Research: Space Physics, 2016, 121, 11,413.	2.4	4
152	MAVEN observations of electronâ€induced whistler mode waves in the Martian magnetosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 9717-9731.	2.4	27
153	Photoelectrons and solar ionizing radiation at Mars: Predictions versus MAVEN observations. Journal of Geophysical Research: Space Physics, 2016, 121, 8859-8870.	2.4	33
154	Deep nightside photoelectron observations by MAVEN SWEA: Implications for Martian northern hemispheric magnetic topology and nightside ionosphere source. Geophysical Research Letters, 2016, 43, 8876-8884.	4.0	54
155	MAVEN observations of magnetic flux ropes with a strong field amplitude in the Martian magnetosheath during the ICME passage on 8 March 2015. Geophysical Research Letters, 2016, 43, 4816-4824.	4.0	14
156	Electron energetics in the Martian dayside ionosphere: Model comparisons with MAVEN data. Journal of Geophysical Research: Space Physics, 2016, 121, 7049-7066.	2.4	38
157	O ⁺ ion beams reflected below the Martian bow shock: MAVEN observations. Journal of Geophysical Research: Space Physics, 2016, 121, 3093-3107.	2.4	13
158	MAVEN Navigation During the First Mars Year of the Science Mission. , 2016, , .		3
159	The sustainability of habitability on terrestrial planets: Insights, questions, and needed measurements from Mars for understanding the evolution of Earthâ€like worlds. Journal of Geophysical Research E: Planets, 2016, 121, 1927-1961.	3.6	72
160	Plasma clouds and snowplows: Bulk plasma escape from Mars observed by MAVEN. Geophysical Research Letters, 2016, 43, 1426-1434.	4.0	36
161	MAVEN observations of partially developed Kelvinâ€Helmholtz vortices at Mars. Geophysical Research Letters, 2016, 43, 4763-4773.	4.0	38
162	Continuous solar wind forcing knowledge: Providing continuous conditions at Mars with the WSAâ€ENLIL + Cone model. Journal of Geophysical Research: Space Physics, 2016, 121, 6207-6222.	2.4	10

#	Article	IF	CITATIONS
163	Enhanced O ₂ ⁺ loss at Mars due to an ambipolar electric field from electron heating. Journal of Geophysical Research: Space Physics, 2016, 121, 4668-4678.	2.4	48
164	MAVEN observation of an obliquely propagating lowâ€frequency wave upstream of Mars. Journal of Geophysical Research: Space Physics, 2016, 121, 2374-2389.	2.4	19
165	Shadowing and anisotropy of solar energetic ions at Mars measured by MAVEN during the March 2015 solar storm. Journal of Geophysical Research: Space Physics, 2016, 121, 2818-2829.	2.4	16
166	Space Weather Storm Responses at Mars: Lessons from A Weakly Magnetized Terrestrial Planet. Proceedings of the International Astronomical Union, 2016, 12, 211-217.	0.0	0
167	MAVEN observations of energyâ€ŧime dispersed electron signatures in Martian crustal magnetic fields. Geophysical Research Letters, 2016, 43, 939-944.	4.0	18
168	Comparison of the Martian thermospheric density and temperature from IUVS/MAVEN data and general circulation modeling. Geophysical Research Letters, 2016, 43, 3095-3104.	4.0	34
169	Argon isotopes as tracers for martian atmospheric loss. Icarus, 2016, 272, 212-227.	2.5	20
170	The MAVEN Solar Wind Electron Analyzer. Space Science Reviews, 2016, 200, 495-528.	8.1	217
171	Characterizing Atmospheric Escape from Mars Today and Through Time, with MAVEN. Space Science Reviews, 2015, 195, 357-422.	8.1	99
172	Magnetotail dynamics at Mars: Initial MAVEN observations. Geophysical Research Letters, 2015, 42, 8828-8837.	4.0	52
173	Response of Mars O ⁺ pickup ions to the 8 March 2015 ICME: Inferences from MAVEN dataâ€based models. Geophysical Research Letters, 2015, 42, 9095-9102.	4.0	47
174	The first in situ electron temperature and density measurements of the Martian nightside ionosphere. Geophysical Research Letters, 2015, 42, 8854-8861.	4.0	62
175	Lowâ€frequency waves in the Martian magnetosphere and their response to upstream solar wind driving conditions. Geophysical Research Letters, 2015, 42, 8917-8924.	4.0	45
176	Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation. Geophysical Research Letters, 2015, 42, 8951-8957.	4.0	168
177	Strong plume fluxes at Mars observed by MAVEN: An important planetary ion escape channel. Geophysical Research Letters, 2015, 42, 8942-8950.	4.0	143
178	Ultraviolet observations of the hydrogen coma of comet C/2013 A1 (Siding Spring) by MAVEN/IUVS. Geophysical Research Letters, 2015, 42, 8803-8809.	4.0	11
179	MAVEN IUVS observations of the aftermath of the Comet Siding Spring meteor shower on Mars. Geophysical Research Letters, 2015, 42, 4755-4761.	4.0	56
180	MAVEN observations of solar wind hydrogen deposition in the atmosphere of Mars. Geophysical Research Letters, 2015, 42, 8901-8909.	4.0	78

#	Article	IF	CITATIONS
181	First measurements of composition and dynamics of the Martian ionosphere by MAVEN's Neutral Gas and Ion Mass Spectrometer. Geophysical Research Letters, 2015, 42, 8958-8965.	4.0	142
182	Metallic ions in the upper atmosphere of Mars from the passage of comet C/2013 A1 (Siding Spring). Geophysical Research Letters, 2015, 42, 4670-4675.	4.0	45
183	Nonmigrating tides in the Martian atmosphere as observed by MAVEN IUVS. Geophysical Research Letters, 2015, 42, 9057-9063.	4.0	43
184	Dayside electron temperature and density profiles at Mars: First results from the MAVEN Langmuir probe and waves instrument. Geophysical Research Letters, 2015, 42, 8846-8853.	4.0	116
185	Multifluid MHD study of the solar wind interaction with Mars' upper atmosphere during the 2015 March 8th ICME event. Geophysical Research Letters, 2015, 42, 9103-9112.	4.0	54
186	Changes in the thermosphere and ionosphere of Mars from Viking to MAVEN. Geophysical Research Letters, 2015, 42, 9071-9079.	4.0	20
187	Retrieval of CO ₂ and N ₂ in the Martian thermosphere using dayglow observations by IUVS on MAVEN. Geophysical Research Letters, 2015, 42, 9040-9049.	4.0	43
188	Study of the Martian cold oxygen corona from the O I 130.4 nm by IUVS/MAVEN. Geophysical Research Letters, 2015, 42, 9031-9039.	4.0	21
189	The structure and variability of Mars upper atmosphere as seen in MAVEN/IUVS dayglow observations. Geophysical Research Letters, 2015, 42, 9023-9030.	4.0	95
190	First results of the <scp>MAVEN</scp> magnetic field investigation. Geophysical Research Letters, 2015, 42, 8819-8827.	4.0	102
191	Threeâ€dimensional structure in the Mars H corona revealed by IUVS on MAVEN. Geophysical Research Letters, 2015, 42, 9001-9008.	4.0	67
192	MAVEN IUVS observation of the hot oxygen corona at Mars. Geophysical Research Letters, 2015, 42, 9009-9014.	4.0	77
193	lonopauseâ€like density gradients in the Martian ionosphere: A first look with MAVEN. Geophysical Research Letters, 2015, 42, 8885-8893.	4.0	42
194	Timeâ€dispersed ion signatures observed in the Martian magnetosphere by MAVEN. Geophysical Research Letters, 2015, 42, 8910-8916.	4.0	25
195	Altitude dependence of nightside Martian suprathermal electron depletions as revealed by MAVEN observations. Geophysical Research Letters, 2015, 42, 8877-8884.	4.0	41
196	Water and water ions in the Martian thermosphere/ionosphere. Geophysical Research Letters, 2015, 42, 8977-8985.	4.0	56
197	MHD model results of solar wind interaction with Mars and comparison with MAVEN plasma observations. Geophysical Research Letters, 2015, 42, 9113-9120.	4.0	58
198	Magnetic reconnection in the nearâ€Mars magnetotail: MAVEN observations. Geophysical Research Letters, 2015, 42, 8838-8845.	4.0	59

#	Article	IF	CITATIONS
199	New observations of molecular nitrogen in the Martian upper atmosphere by IUVS on MAVEN. Geophysical Research Letters, 2015, 42, 9050-9056.	4.0	41
200	The MAVEN Solar Energetic Particle Investigation. Space Science Reviews, 2015, 195, 153-172.	8.1	79
201	MAVEN SupraThermal and Thermal Ion Compostion (STATIC) Instrument. Space Science Reviews, 2015, 195, 199-256.	8.1	225
202	Marsward and tailward ions in the nearâ€Mars magnetotail: MAVEN observations. Geophysical Research Letters, 2015, 42, 8925-8932.	4.0	34
203	Mars heavy ion precipitating flux as measured by Mars Atmosphere and Volatile EvolutioN. Geophysical Research Letters, 2015, 42, 9135-9141.	4.0	39
204	Model insights into energetic photoelectrons measured at Mars by MAVEN. Geophysical Research Letters, 2015, 42, 8894-8900.	4.0	28
205	Estimation of the spatial structure of a detached magnetic flux rope at Mars based on simultaneous MAVEN plasma and magnetic field observations. Geophysical Research Letters, 2015, 42, 8933-8941.	4.0	17
206	Electric Mars: The first direct measurement of an upper limit for the Martian "polar wind―electric potential. Geophysical Research Letters, 2015, 42, 9128-9134.	4.0	38
207	Implications of MAVEN Mars nearâ€wake measurements and models. Geophysical Research Letters, 2015, 42, 9087-9094.	4.0	35
208	A comparison of 3â€Ð model predictions of Mars' oxygen corona with early MAVEN IUVS observations. Geophysical Research Letters, 2015, 42, 9015-9022.	4.0	35
209	A hot flow anomaly at Mars. Geophysical Research Letters, 2015, 42, 9121-9127.	4.0	20
210	Comparison of model predictions for the composition of the ionosphere of Mars to MAVEN NGIMS data. Geophysical Research Letters, 2015, 42, 8966-8976.	4.0	25
211	Probing the Martian atmosphere with MAVEN/IUVS stellar occultations. Geophysical Research Letters, 2015, 42, 9064-9070.	4.0	42
212	MAVEN and the Mars Initial Reference Ionosphere model. Geophysical Research Letters, 2015, 42, 9080-9086.	4.0	15
213	A comet engulfs Mars: MAVEN observations of comet Siding Spring's influence on the Martian magnetosphere. Geophysical Research Letters, 2015, 42, 8810-8818.	4.0	8
214	MAVEN insights into oxygen pickup ions at Mars. Geophysical Research Letters, 2015, 42, 8870-8876.	4.0	53
215	Highâ€altitude gravity waves in the Martian thermosphere observed by MAVEN/NGIMS and modeled by a gravity wave scheme. Geophysical Research Letters, 2015, 42, 8993-9000.	4.0	79
216	Initial results from the MAVEN mission to Mars. Geophysical Research Letters, 2015, 42, 8791-8802.	4.0	101

#	Article	IF	CITATIONS
217	The spatial distribution of planetary ion fluxes near Mars observed by MAVEN. Geophysical Research Letters, 2015, 42, 9142-9148.	4.0	115
218	Neutral density response to solar flares at Mars. Geophysical Research Letters, 2015, 42, 8986-8992.	4.0	33
219	Preface: The Mars Atmosphere and Volatile Evolution (MAVEN) Mission. Space Science Reviews, 2015, 195, 1-2.	8.1	11
220	The Mars Atmosphere and Volatile Evolution (MAVEN) Mission. Space Science Reviews, 2015, 195, 3-48.	8.1	563
221	MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science, 2015, 350, aad0210.	12.6	166
222	Discovery of diffuse aurora on Mars. Science, 2015, 350, aad0313.	12.6	98
223	Dust observations at orbital altitudes surrounding Mars. Science, 2015, 350, aad0398.	12.6	41
224	Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. Science, 2015, 350, aad0459.	12.6	90
225	MAVEN Explores the Martian Upper Atmosphere. Science, 2015, 350, 643-643.	12.6	49
226	The Solar Wind Ion Analyzer for MAVEN. Space Science Reviews, 2015, 195, 125-151.	8.1	300
227	Ionospheric plasma density variations observed at Mars by MAVEN/LPW. Geophysical Research Letters, 2015, 42, 8862-8869.	4.0	32
228	Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1245267.	12.6	323
229	Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1243480.	12.6	508
230	Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover. Science, 2014, 343, 1244797.	12.6	475
231	Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover. Science, 2013, 341, 263-266.	12.6	327
232	Isotope Ratios of H, C, and O in CO ₂ and H ₂ O of the Martian Atmosphere. Science, 2013, 341, 260-263.	12.6	241
233	lsotopes of nitrogen on Mars: Atmospheric measurements by Curiosity's mass spectrometer. Geophysical Research Letters, 2013, 40, 6033-6037.	4.0	72
234	The Sample Analysis at Mars Investigation and Instrument Suite. Space Science Reviews, 2012, 170, 401-478.	8.1	435

#	Article	IF	CITATIONS
235	Bibring Receives 2009 Whipple Award. Eos, 2010, 91, 217-217.	0.1	Ο
236	EnceladusOasis or Ice Ball?. Science, 2008, 320, 1432-1433.	12.6	17
237	Astrobiological implications of Mars' surface composition and properties. , 2008, , 599-624.		19
238	Thermophysical properties of the Isidis basin, Mars. Journal of Geophysical Research, 2007, 112, .	3.3	8
239	Thermophysical properties of the MER and Beagle II landing site regions on Mars. Journal of Geophysical Research, 2006, 111, .	3.3	19
240	Mapping compositional diversity on the surface of Mars: The Spectral Variance Index. Journal of Geophysical Research, 2006, 111, .	3.3	7
241	Surficial properties of landslides and surrounding units in Ophir Chasma, Mars. Journal of Geophysical Research, 2006, 111, .	3.3	9
242	Mars low-latitude neutron distribution: Possible remnant near-surface water ice and a mechanism for its recent emplacement. Icarus, 2005, 175, 58-67.	2.5	64
243	Mars Exploration Rover candidate landing sites as viewed by THEMIS. Icarus, 2005, 176, 12-43.	2.5	70
244	PLANETARY SCIENCE: The Changing Picture of Volatiles and Climate on Mars. Science, 2005, 310, 1439-1440.	12.6	18
245	Biological potential of low-temperature aqueous environments on Mars. International Journal of Astrobiology, 2005, 4, 155.	1.6	11
246	New Perspectives on Ancient Mars. Science, 2005, 307, 1214-1220.	12.6	265
247	A volcanic interpretation of Gusev Crater surface materials from thermophysical, spectral, and morphological evidence. Journal of Geophysical Research, 2005, 110, .	3.3	52
248	The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission. Space Science Reviews, 2004, 110, 85-130.	8.1	802
249	Morphology and Composition of the Surface of Mars: Mars Odyssey THEMIS Results. Science, 2003, 300, 2056-2061.	12.6	368
250	Subfreezing Activity of Microorganisms and the Potential Habitability of Mars' Polar Regions. Astrobiology, 2003, 3, 343-350.	3.0	143
251	Rock size-frequency distributions on Mars and implications for Mars Exploration Rover landing safety and operations. Journal of Geophysical Research, 2003, 108, .	3.3	117
252	Science from a Mars Airplane: The Aerial Regional-scale Environmental Survey (ARES) of Mars. , 2003, , .		27

Β Μ Јакоѕку

#	Article	IF	CITATIONS
253	Biological Potential of Martian Hydrothermal Systems. Astrobiology, 2003, 3, 407-414.	3.0	58
254	Rock size-frequency distributions on Mars and implications for Mars Exploration Rover landing safety and operations. , 2003, .		1
255	Effects of topography on thermal infrared spectra of planetary surfaces. Journal of Geophysical Research, 2002, 107, 16-1-16-6.	3.3	12
256	High-resolution thermal inertia mapping of Mars: Sites of exobiological interest. Journal of Geophysical Research, 2001, 106, 23887-23907.	3.3	35
257	Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. Journal of Geophysical Research, 2001, 106, 23823-23871.	3.3	903
258	Thermal inertia of crater-related wind streaks on Mars. Journal of Geophysical Research, 2001, 106, 23909-23920.	3.3	35
259	Mars' volatile and climate history. Nature, 2001, 412, 237-244.	27.8	416
260	Ancient Geodynamics and Global-Scale Hydrology on Mars. Science, 2001, 291, 2587-2591.	12.6	453
261	High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer. Icarus, 2000, 148, 437-455.	2.5	470
262	The thermal inertia of Mars from the Mars Global Surveyor Thermal Emission Spectrometer. Journal of Geophysical Research, 2000, 105, 9643-9652.	3.3	88
263	Planetary science, astrobiology, and the role of science and exploration in society. Eos, 2000, 81, 58.	0.1	1
264	Martian stable isotopes: volatile evolution, climate change and exobiological implications. , 1999, 29, 47-57.		8
265	Water, Climate, and Life. Science, 1999, 283, 648-649.	12.6	12
266	The biological potential of Mars, the early Earth, and Europa. Journal of Geophysical Research, 1998, 103, 19359-19364.	3.3	130
267	Atmospheric loss since the onset of the Martian geologic record: Combined role of impact erosion and sputtering. Journal of Geophysical Research, 1998, 103, 22689-22694.	3.3	99
268	Carbonates in Martian meteorite ALH84001: A planetary perspective on formation temperature. Geophysical Research Letters, 1997, 24, 819-822.	4.0	16
269	Impact of a paleomagnetic field on sputtering loss of Martian atmospheric argon and neon. Journal of Geophysical Research, 1997, 102, 9183-9189.	3.3	44
270	The history of Martian volatiles. Reviews of Geophysics, 1997, 35, 1-16.	23.0	118

#	Article	IF	CITATIONS
271	Evolution of Martian atmospheric argon: Implications for sources of volatiles. Journal of Geophysical Research, 1996, 101, 14933-14949.	3.3	55
272	Out on a Limb: Martian Atmospheric Dust Opacity during the Past Hundred Years. Icarus, 1995, 117, 352-357.	2.5	4
273	Chaotic obliquity and the nature of the Martian climate. Journal of Geophysical Research, 1995, 100, 1579.	3.3	144
274	The distribution and behavior of Martian ground ice during past and present epochs. Journal of Geophysical Research, 1995, 100, 11781.	3.3	353
275	Mars Atmospheric Loss and Isotopic Fractionation by Solar-Wind-Induced Sputtering and Photochemical Escape. Icarus, 1994, 111, 271-288.	2.5	260
276	Evolution of water on Mars. Nature, 1994, 370, 328-329.	27.8	38
277	The Mars Water Cycle at Other Epochs: Recent History of the Polar Caps and Layered Terrain. Icarus, 1993, 102, 286-297.	2.5	52
278	Geographic variations in the thermal and diffusive stability of ground ice on Mars. Journal of Geophysical Research, 1993, 98, 3345-3364.	3.3	288
279	Mars volatile evolution: Implications of the recent measurement of ¹⁷ 0 in water from the SNC meteorites. Geophysical Research Letters, 1993, 20, 1591-1594.	4.0	29
280	The effects of orbital and climatic variations on Martian surface heat flow. Geophysical Research Letters, 1992, 19, 2393-2396.	4.0	7
281	Mars volatile evolution: Evidence from stable isotopes. Icarus, 1991, 94, 14-31.	2.5	93
282	Sublimation and transport of water from the north residual polar cap on Mars. Journal of Geophysical Research, 1990, 95, 1423-1437.	3.3	104
283	Mars atmospheric D/H: Consistent with polar volatile theory?. Journal of Geophysical Research, 1990, 95, 1475-1480.	3.3	27
284	Viking landing sites, remote-sensing observations, and physical properties of Martian surface materials. Icarus, 1989, 81, 164-184.	2.5	124
285	Fourth International Mars Conference. Eos, 1989, 70, 552.	0.1	0
286	Martian neutron leakage spectra. Journal of Geophysical Research, 1988, 93, 6353-6368.	3.3	81
287	On the thermal properties of Martian fines. Icarus, 1986, 66, 117-124.	2.5	121
288	Are the Viking Lander sites representative of the surface of Mars?. Icarus, 1986, 66, 125-133.	2.5	35

#	Article	IF	CITATIONS
289	The seasonal cycle of water on Mars. Space Science Reviews, 1985, 41, 131.	8.1	106
290	Possible precipitation of ice at low latitudes of Mars during periods of high obliquity. Nature, 1985, 315, 559-561.	27.8	180
291	Martian atmospheric photochemistry and composition during periods of low obliquity. Journal of Geophysical Research, 1985, 90, 3435-3440.	3.3	21
292	Comparison of ground-based and Viking Orbiter measurements of Martian water vapor: Variability of the seasonal cycle. Icarus, 1984, 57, 322-334.	2.5	76
293	The role of seasonal reservoirs in the Mars water cycle. Icarus, 1983, 55, 1-18.	2.5	59
294	The role of seasonal reservoirs in the Mars water cycle. Icarus, 1983, 55, 19-39.	2.5	69
295	The seasonal and global behavior of water vapor in the Mars atmosphere: Complete global results of the Viking Atmospheric Water Detector Experiment. Journal of Geophysical Research, 1982, 87, 2999-3019.	3.3	325
296	A comparison of the thermal and radar characteristics of Mars. Icarus, 1981, 45, 25-38.	2.5	36
297	Thermal and albedo mapping of Mars during the Viking primary mission. Journal of Geophysical Research, 1977, 82, 4249-4291.	3.3	600