Noa Lipstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2756573/publications.pdf Version: 2024-02-01

NOA LIDSTEIN

#	Article	IF	CITATIONS
1	Dynamic Control of Synaptic Vesicle Replenishment and Short-Term Plasticity by Ca2+-Calmodulin-Munc13-1 Signaling. Neuron, 2013, 79, 82-96.	8.1	149
2	Photoswitchable diacylglycerols enable optical control of protein kinase C. Nature Chemical Biology, 2016, 12, 755-762.	8.0	112
3	Synaptic UNC13A protein variant causes increased neurotransmission and dyskinetic movement disorder. Journal of Clinical Investigation, 2017, 127, 1005-1018.	8.2	84
4	Spike bursts increase amyloid-β 40/42 ratio by inducing a presenilin-1 conformational change. Nature Neuroscience, 2013, 16, 587-595.	14.8	77
5	Modular architecture of Munc13/calmodulin complexes: dual regulation by Ca2+ and possible function in short-term synaptic plasticity. EMBO Journal, 2010, 29, 680-691.	7.8	65
6	Munc13-Independent Vesicle Priming at Mouse Photoreceptor Ribbon Synapses. Journal of Neuroscience, 2012, 32, 8040-8052.	3.6	62
7	Nonconserved Ca ²⁺ /Calmodulin Binding Sites in Munc13s Differentially Control Synaptic Short-Term Plasticity. Molecular and Cellular Biology, 2012, 32, 4628-4641.	2.3	53
8	Multiple functional domains are involved in tomosyn regulation of exocytosis. Journal of Neurochemistry, 2007, 103, 604-616.	3.9	43
9	Munc13-1 is a Ca2+-phospholipid-dependent vesicle priming hub that shapes synaptic short-term plasticity and enables sustained neurotransmission. Neuron, 2021, 109, 3980-4000.e7.	8.1	31
10	Apparent calcium dependence of vesicle recruitment. Journal of Physiology, 2018, 596, 4693-4707.	2.9	29
11	Molecular and functional architecture of striatal dopamine release sites. Neuron, 2022, 110, 248-265.e9.	8.1	29
12	Allosteric interactions between scorpion toxin receptor sites on voltageâ€gated Na channels imply a novel role for weakly active components in arthropod venom. FASEB Journal, 2006, 20, 1933-1935.	0.5	27
13	Miniaturization of Scorpion Î ² -Toxins Uncovers a Putative Ancestral Surface of Interaction with Voltage-gated Sodium Channels. Journal of Biological Chemistry, 2008, 283, 15169-15176.	3.4	16
14	Presynaptic Calmodulin targets: lessons from structural proteomics. Expert Review of Proteomics, 2017, 14, 223-242.	3.0	15
15	Distinct modes of endocytotic presynaptic membrane and protein uptake at the calyx of Held terminal of rats and mice. ELife, 2016, 5, .	6.0	14
16	Presynaptic disorders: a clinical and pathophysiological approach focused on the synaptic vesicle. Journal of Inherited Metabolic Disease, 2018, 41, 1131-1145.	3.6	13
17	Delineating the Molecular Basis of the Calmodulin–bMunc13-2 Interaction by Cross-Linking/Mass Spectrometry—Evidence for a Novel CaM Binding Motif in bMunc13-2. Cells, 2020, 9, 136	4.1	7
18	Structural insights into calmodulin/Munc13 interaction. Biological Chemistry, 2014, 395, 763-768.	2.5	4

#	Article	IF	CITATIONS
19	Mechanism underlying a risk gene in neurodegeneration. Nature, 2022, 603, 33-34.	27.8	1