Jinyou Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2755648/publications.pdf

Version: 2024-02-01

139 papers	6,742 citations	47006 47 h-index	71685 76 g-index
139 all docs	139 docs citations	139 times ranked	6926 citing authors

#	Article	IF	CITATIONS
1	Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition. Water Research, 2019, 148, 416-424.	11.3	691
2	Urchin-like hierarchical CoZnAl-LDH/RGO/g-C3N4 hybrid as a Z-scheme photocatalyst for efficient and selective CO2 reduction. Applied Catalysis B: Environmental, 2019, 255, 117771.	20.2	212
3	Synthesis of N-Doped Hollow-Structured Mesoporous Carbon Nanospheres for High-Performance Supercapacitors. ACS Applied Materials & Supercapacitors.	8.0	190
4	In Situ Growth of ZIF-8 on PAN Fibrous Filters for Highly Efficient U(VI) Removal. ACS Applied Materials & Long Removal. 10, 24164-24171.	8.0	175
5	Electrospun ZIF-based hierarchical carbon fiber as an efficient electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 1211-1220.	10.3	161
6	Nitrogen-Doped Hollow Mesoporous Carbon Spheres for Efficient Water Desalination by Capacitive Deionization. ACS Sustainable Chemistry and Engineering, 2017, 5, 6635-6644.	6.7	157
7	Metal–organic framework derived Co ₃ O ₄ /C@SiO ₂ yolk–shell nanoreactors with enhanced catalytic performance. Journal of Materials Chemistry A, 2018, 6, 11226-11235.	10.3	153
8	Metal-organic framework one-dimensional fibers as efficient catalysts for activating peroxymonosulfate. Chemical Engineering Journal, 2017, 330, 262-271.	12.7	149
9	Controllable Synthesis of Functional Hollow Carbon Nanostructures with Dopamine As Precursor for Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2015, 7, 18609-18617.	8.0	144
10	Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil. Journal of Hazardous Materials, 2009, 163, 1199-1206.	12.4	141
11	Nanostructured CoP: An efficient catalyst for degradation of organic pollutants by activating peroxymonosulfate. Journal of Hazardous Materials, 2017, 329, 92-101.	12.4	141
12	Electrochemical degradation of pyridine by Ti/SnO2–Sb tubular porous electrode. Chemosphere, 2016, 149, 49-56.	8.2	136
13	In-situ incorporation of iron-copper bimetallic particles in electrospun carbon nanofibers as an efficient Fenton catalyst. Applied Catalysis B: Environmental, 2017, 207, 316-325.	20.2	128
14	Efficient nitro reduction and dechlorination of 2,4-dinitrochlorobenzene through the integration of bioelectrochemical system into upflow anaerobic sludge blanket: A comprehensive study. Water Research, 2016, 88, 257-265.	11.3	102
15	Substantial enhancement of anaerobic pyridine bio-mineralization by electrical stimulation. Water Research, 2018, 130, 291-299.	11.3	101
16	Yolk–Shell Fe ⁰ @SiO ₂ Nanoparticles as Nanoreactors for Fenton-like Catalytic Reaction. ACS Applied Materials & Interfaces, 2014, 6, 13167-13173.	8.0	95
17	Microbial degradation mechanism of pyridine by Paracoccus sp. NJUST30 newly isolated from aerobic granules. Chemical Engineering Journal, 2018, 344, 86-94.	12.7	86
18	Coupling of a bioelectrochemical system for p-nitrophenol removal in an upflow anaerobic sludge blanket reactor. Water Research, 2014, 67, 11-18.	11.3	85

#	Article	IF	CITATIONS
19	Improved electrochemical oxidation of tricyclazole from aqueous solution by enhancing mass transfer in a tubular porous electrode electrocatalytic reactor. Electrochimica Acta, 2016, 189, 1-8.	5.2	83
20	Aerobic granulation accelerated by biochar for the treatment of refractory wastewater. Chemical Engineering Journal, 2017, 314, 88-97.	12.7	77
21	Preparation of MnO x -loaded biochar for Pb 2+ removal: Adsorption performance and possible mechanism. Journal of the Taiwan Institute of Chemical Engineers, 2016, 66, 313-320.	5.3	75
22	Developing new adsorptive membrane by modification of support layer with iron oxide microspheres for arsenic removal. Journal of Colloid and Interface Science, 2018, 514, 760-768.	9.4	75
23	Biodegradation of 2,4,6-trinitrophenol (picric acid) in a biological aerated filter (BAF). Bioresource Technology, 2009, 100, 1922-1930.	9.6	74
24	Biological denitrification of high-nitrate wastewater in a modified anoxic/oxic-membrane bioreactor (A/O-MBR). Journal of Hazardous Materials, 2009, 172, 595-600.	12.4	73
25	Convenient synthesis and engineering of ultrafine Co ₃ O ₄ -incorporated carbon composite: towards practical application of environmental remediation. Journal of Materials Chemistry A, 2018, 6, 3454-3461.	10.3	70
26	Iron–copper bimetallic nanoparticles supported on hollow mesoporous silica spheres: the effect of Fe/Cu ratio on heterogeneous Fenton degradation of a dye. RSC Advances, 2016, 6, 54623-54635.	3.6	69
27	Reuse of Fenton sludge as an iron source for NiFe 2 O 4 synthesis and its application in the Fenton-based process. Journal of Environmental Sciences, 2017, 53, 1-8.	6.1	68
28	Biochar supported sulfide-modified nanoscale zero-valent iron for the reduction of nitrobenzene. RSC Advances, 2018, 8, 22161-22168.	3.6	68
29	Iron-tannin-framework complex modified PES ultrafiltration membranes with enhanced filtration performance and fouling resistance. Journal of Colloid and Interface Science, 2017, 505, 642-652.	9.4	67
30	Synthesis of Cu ₂ O–CuFe ₂ O ₄ microparticles from Fenton sludge and its application in the Fenton process: the key role of Cu ₂ O in the catalytic degradation of phenol. RSC Advances, 2018, 8, 5740-5748.	3.6	67
31	Functional Group-Dependent Screening of Organophosphate Esters (OPEs) and Discovery of an Abundant OPE Bis-(2-ethylhexyl)-phenyl Phosphate in Indoor Dust. Environmental Science & Emp; Technology, 2020, 54, 4455-4464.	10.0	66
32	Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater. Journal of Hazardous Materials, 2015, 295, 153-160.	12.4	64
33	Coupling of iron shavings into the anaerobic system for enhanced 2,4-dinitroanisole reduction in wastewater. Water Research, 2016, 101, 457-466.	11.3	63
34	Conversion of waste FGD gypsum into hydroxyapatite for removal of Pb2+ and Cd2+ from wastewater. Journal of Colloid and Interface Science, 2014, 429, 68-76.	9.4	61
35	Enhanced pyridine biodegradation under anoxic condition: The key role of nitrate as the electron acceptor. Chemical Engineering Journal, 2015, 277, 140-149.	12.7	61
36	Facilitated bio-mineralization of N,N-dimethylformamide in anoxic denitrification system: Long-term performance and biological mechanism. Water Research, 2020, 186, 116306.	11.3	60

#	Article	IF	CITATIONS
37	Substantially enhanced anaerobic reduction of nitrobenzene by biochar stabilized sulfide-modified nanoscale zero-valent iron: Process and mechanisms. Environment International, 2019, 131, 105020.	10.0	59
38	Pretreatment of 2,4-dinitroanisole (DNAN) producing wastewater using a combined zero-valent iron (ZVI) reduction and Fenton oxidation process. Journal of Hazardous Materials, 2013, 260, 993-1000.	12.4	57
39	Organophosphate Ester, 2-Ethylhexyl Diphenyl Phosphate (EHDPP), Elicits Cytotoxic and Transcriptomic Effects in Chicken Embryonic Hepatocytes and Its Biotransformation Profile Compared to Humans. Environmental Science & Eamp; Technology, 2019, 53, 2151-2160.	10.0	57
40	Enhanced nitrobenzene reduction by modified biochar supported sulfidated nano zerovalent iron: Comparison of surface modification methods. Science of the Total Environment, 2019, 694, 133701.	8.0	52
41	Prussian blue analogues-derived bimetallic iron-cobalt selenides for efficient overall water splitting. Journal of Colloid and Interface Science, 2019, 548, 48-55.	9.4	52
42	Controlled synthesis of bimetallic Prussian blue analogues to activate peroxymonosulfate for efficient bisphenol A degradation. Journal of Hazardous Materials, 2020, 387, 121701.	12.4	51
43	Fouling behavior of polyethersulfone ultrafiltration membranes functionalized with sol–gel formed ZnO nanoparticles. RSC Advances, 2015, 5, 50711-50719.	3.6	50
44	Controllable synthesis of N-doped hollow-structured mesoporous carbon spheres by an amine-induced Stöber-silica/carbon assembly process. Journal of Materials Chemistry A, 2016, 4, 11916-11923.	10.3	50
45	Metal–Organic Framework-Derived Hollow Carbon Nanocubes for Fast Solid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons. ACS Applied Materials & English (10, 15051-15057).	8.0	50
46	Simultaneous debromination and mineralization of bromophenol in an up-flow electricity-stimulated anaerobic system. Water Research, 2019, 157, 8-18.	11.3	50
47	Coaggregation mechanism of pyridine-degrading strains for the acceleration of the aerobic granulation process. Chemical Engineering Journal, 2018, 338, 176-183.	12.7	49
48	Electrochemical treatment of flutriafol wastewater using a novel 3D macroporous PbO2 filter: Operating parameters, mechanism and toxicity assessment. Journal of Hazardous Materials, 2018, 358, 187-197.	12.4	49
49	Removal of phosphate from wastewater using alkaline residue. Journal of Environmental Sciences, 2014, 26, 970-980.	6.1	47
50	Organic half-metal derived erythroid-like BiVO4/hm-C4N3 Z-Scheme photocatalyst: Reduction sites upgrading and rate-determining step modulation for overall CO2 and H2O conversion. Applied Catalysis B: Environmental, 2021, 295, 120277.	20.2	47
51	Bioelectrochemical system for recalcitrant p-nitrophenol removal. Journal of Hazardous Materials, 2012, 209-210, 516-519.	12.4	45
52	Fabrication of polypyrrole/ \hat{l}^2 -MnO 2 modified graphite felt anode for enhancing recalcitrant phenol degradation in a bioelectrochemical system. Electrochimica Acta, 2017, 244, 119-128.	5.2	45
53	Comprehensive comparison of bacterial communities in a membrane-free bioelectrochemical system for removing different mononitrophenols from wastewater. Bioresource Technology, 2016, 216, 645-652.	9.6	44
54	Bioaugmentation potential of a newly isolated strain Sphingomonas sp. NJUST37 for the treatment of wastewater containing highly toxic and recalcitrant tricyclazole. Bioresource Technology, 2018, 264, 98-105.	9.6	44

#	Article	IF	CITATIONS
55	Enhanced heterogeneous Fenton-like systems based on highly dispersed Fe0-Fe2O3 nanoparticles embedded ordered mesoporous carbon composite catalyst. Environmental Pollution, 2018, 243, 1068-1077.	7.5	43
56	Role of molecular structure on bioelectrochemical reduction of mononitrophenols from wastewater. Water Research, 2013, 47, 5511-5519.	11.3	42
57	Enhanced anoxic biodegradation of pyridine coupled to nitrification in an inner loop anoxic/oxic-dynamic membrane bioreactor (A/O-DMBR). Bioresource Technology, 2018, 267, 626-633.	9.6	42
58	In situ no-slot joint integration of half-metallic C(CN)3 cocatalyst into g-C3N4 scaffold: An absolute metal-free in-plane heterosystem for efficient and selective photoconversion of CO2 into CO. Applied Catalysis B: Environmental, 2020, 264, 118470.	20.2	41
59	Biodegradation kinetics of picric acid by Rhodococcus sp.NJUST16 in batch reactors. Journal of Hazardous Materials, 2009, 167, 193-198.	12.4	40
60	Advanced treatment of triazole fungicides discharged water in pilot scale by integrated system: Enhanced electrochemical oxidation, upflow biological aerated filter and electrodialysis. Chemical Engineering Journal, 2017, 315, 335-344.	12.7	40
61	Enhanced Cr(VI) removal in the synergy between the hydroxyl-functionalized ball-milled ZVI/Fe3O4 composite and Na2EDTA complexation. Chemical Engineering Journal, 2019, 359, 874-881.	12.7	38
62	Bioaugmentation strategy for the treatment of fungicide wastewater by two triazole-degrading strains. Chemical Engineering Journal, 2018, 349, 17-24.	12.7	36
63	Deep-Eutectic Solvents Derived Nitrogen-Doped Graphitic Carbon as a Superior Electrocatalyst for Oxygen Reduction. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32737-32744.	8.0	35
64	Recycle of Fenton sludge through one-step synthesis of aminated magnetic hydrochar for Pb2+ removal from wastewater. Journal of Hazardous Materials, 2021, 406, 124581.	12.4	34
65	Electrochemical treatment of anticancer drugs wastewater containing 5-Fluoro-2-Methoxypyrimidine using a tubular porous electrode electrocatalytic reactor. Electrochimica Acta, 2016, 220, 211-221.	5.2	33
66	Electrospun mulberry-like hierarchical carbon fiber web for high-performance supercapacitors. Journal of Colloid and Interface Science, 2018, 512, 713-721.	9.4	33
67	A novel approach for recovery of metals from waste printed circuit boards and simultaneous removal of iron from steel pickling waste liquor by two-step hydrometallurgical method. Waste Management, 2018, 71, 411-419.	7.4	31
68	Preparation and characterization of a TiO ₂ -NT/SnO ₂ â€"Sb tubular porous electrode with long service lifetime for wastewater treatment process. RSC Advances, 2017, 7, 37806-37814.	3.6	29
69	Co-metabolic enhancement of 1H-1,2,4-triazole biodegradation through nitrification. Bioresource Technology, 2019, 271, 236-243.	9.6	29
70	Enhancing anaerobic digestion of waste activated sludge by the combined use of NaOH and Mg(OH)2: Performance evaluation and mechanism study. Bioresource Technology, 2016, 220, 601-608.	9.6	28
71	Interfacial growth of metal–organic framework membranes on porous polymers <i>via</i> phase transformation. Chemical Communications, 2018, 54, 3590-3593.	4.1	28
72	Simultaneous pyridine biodegradation and nitrogen removal in an aerobic granular system. Journal of Environmental Sciences, 2018, 67, 318-329.	6.1	28

#	Article	IF	CITATIONS
73	Nitrate stimulation of N-Methylpyrrolidone biodegradation by Paracoccus pantotrophus: Metabolite mechanism and Genomic characterization. Bioresource Technology, 2019, 294, 122185.	9.6	28
74	Construction and application of a 1-liter upflow-stacked microbial desalination cell. Chemosphere, 2020, 248, 126028.	8.2	26
75	Characteristics of pyridine biodegradation by a novel bacterial strain, <i>Rhizobium </i> sp. NJUST18. Desalination and Water Treatment, 2015, 53, 2005-2013.	1.0	25
76	Bioaugmentation of a continuous-flow self-forming dynamic membrane bioreactor for the treatment of wastewater containing high-strength pyridine. Environmental Science and Pollution Research, 2017, 24, 3437-3447.	5. 3	25
77	Electricity-stimulated anaerobic system (ESAS) for enhanced energy recovery and pollutant removal: A critical review. Chemical Engineering Journal, 2021, 411, 128548.	12.7	25
78	Biodegradation mechanism of 1H-1,2,4-triazole by a newly isolated strain Shinella sp. NJUST26. Scientific Reports, 2016, 6, 29675.	3.3	24
79	BiVO4/FeOOH semiconductor-microbe interface for enhanced visible-light-driven biodegradation of pyridine. Water Research, 2020, 187, 116464.	11.3	24
80	Optimization of S/Fe ratio for enhanced nitrobenzene biological removal in anaerobic System amended with Sulfide-modified nanoscale zerovalent iron. Chemosphere, 2020, 247, 125832.	8.2	23
81	Fabrication of ordered mesoporous carbon hollow fiber membranes via a confined soft templating approach. Journal of Materials Chemistry A, 2014, 2, 4144-4149.	10.3	22
82	Simultaneous removal of pyridine and denitrification in an integrated bioelectro-photocatalytic system utilizing N-doped graphene/α-Fe2O3 modified photoanode. Electrochimica Acta, 2021, 366, 137425.	5.2	22
83	In-situ construction of 3D marigold-like CoAl-LDH/Ti3C2 heterosystem collaborating with 2D/2D interface for efficient photodegradation of multiple antibiotics. Applied Surface Science, 2021, 569, 151084.	6.1	22
84	Enhanced bio-photodegradation of p-chlorophenol by CdS/g-C3N4 3D semiconductor-microbe interfaces. Science of the Total Environment, 2022, 807, 151006.	8.0	22
85	Kinetics study of pyridine biodegradation by a novel bacterial strain, Rhizobium sp. NJUST18. Bioprocess and Biosystems Engineering, 2014, 37, 1185-1192.	3.4	21
86	Hollow mesoporous carbon spheres-based fiber coating for solid-phase microextraction of polycyclic aromatic hydrocarbons. Journal of Chromatography A, 2017, 1520, 58-64.	3.7	20
87	Ag-TiO2/biofilm/nitrate interface enhanced visible light-assisted biodegradation of tetracycline: The key role of nitrate as the electron accepter. Water Research, 2022, 215, 118212.	11.3	20
88	Ordered mesoporous carbon film as an effective solid-phase microextraction coating for determination of benzene series from aqueous media. Analytica Chimica Acta, 2015, 888, 85-93.	5.4	19
89	Coupled biodegradation of p-nitrophenol and p-aminophenol in bioelectrochemical system: Mechanism and microbial functional diversity. Journal of Environmental Sciences, 2021, 108, 134-144.	6.1	19
90	Selective removal of nitroaromatic compounds from wastewater in an integrated zero valent iron (ZVI) reduction and ZVI/H ₂ O ₂ oxidation process. RSC Advances, 2015, 5, 57444-57452.	3.6	18

#	Article	IF	Citations
91	Enhanced bioelectrochemical reduction of p-nitrophenols in the cathode of self-driven microbial fuel cells. RSC Advances, 2016, 6, 29072-29079.	3.6	18
92	Simultaneous high-concentration pyridine removal and denitrification in an electricity assisted bio-photodegradation system. Chemical Engineering Journal, 2022, 430, 132598.	12.7	18
93	Enhanced reductive transformation of 2,4-dinitroanisole in a anaerobic system: the key role of zero valent iron. RSC Advances, 2015, 5, 75195-75203.	3.6	17
94	Synthesis of Ag@SiO ₂ yolk–shell nanoparticles for hydrogen peroxide detection. RSC Advances, 2015, 5, 17372-17378.	3.6	17
95	Promotion of Para-Chlorophenol Reduction and Extracellular Electron Transfer in an Anaerobic System at the Presence of Iron-Oxides. Frontiers in Microbiology, 2018, 9, 2052.	3 . 5	17
96	Removal of lead complexes by ferrous phosphate and iron phosphate: Unexpected favorable role of ferrous ions. Journal of Hazardous Materials, 2020, 392, 122509.	12.4	17
97	Ordered mesoporous silica film as a novel fiber coating for solid-phase microextraction. Talanta, 2017, 174, 307-313.	5. 5	16
98	Pesticide tailwater deeply treated by tubular porous electrode reactor (TPER): Purpose for discharging and cost saving. Chemosphere, 2017, 185, 86-93.	8.2	16
99	Efficient and rapid removal of EDTA-chelated Pb(II) by the Fe(III)/flue gas desulfurization gypsum (FGDG) system. Journal of Colloid and Interface Science, 2019, 542, 379-386.	9.4	16
100	New insight into increased toxicity during ozonation of chlorophenol: The significant contribution of oxidizing intermediates. Science of the Total Environment, 2021, 769, 144569.	8.0	16
101	Rapid sequestration of chelated Cr(III) by ferrihydrite: Adsorption and overall transformation of Cr(III) complexes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126819.	4.7	16
102	Facile preparation of novel magnetic mesoporous Fe Mn binary oxides from Mn encapsulated carboxymethyl cellulose-Fe(III) hydrogel for antimony removal from water. Science of the Total Environment, 2022, 821, 153529.	8.0	16
103	Hydrolysis and volatile fatty acids accumulation of waste activated sludge enhanced by the combined use of nitrite and alkaline pH. Environmental Science and Pollution Research, 2015, 22, 18793-18800.	5.3	15
104	Low dose of sulfur-modified zero-valent iron for decontamination of trace Cd(II)-complexes in high-salinity wastewater. Science of the Total Environment, 2021, 793, 148579.	8.0	15
105	Synthesis of magnetic hydrochar from Fenton sludge and sewage sludge for enhanced anaerobic decolorization of azo dye AO7. Journal of Hazardous Materials, 2022, 424, 127622.	12.4	15
106	Biomassâ€Induced Diphasic Carbon Decoration for Carbon Nitride: Band and Electronic Engineering Targeting Efficient N ₂ Photofixation. Small, 2022, 18, e2105217.	10.0	14
107	Novel strategy for membrane biofouling control in MBR with nano-MnO2 modified PVDF membrane by in-situ ozonation. Science of the Total Environment, 2022, 808, 151996.	8.0	14
108	Use of a novel coupled-oxidation tubular reactor (COTR)/ NTP-DBD catalytic plasma in a synergistic electro-catalysis system for odorous mercaptans degradation. Chemosphere, 2019, 216, 533-544.	8.2	13

#	Article	IF	Citations
109	Accelerated anaerobic biodecolorization of sulfonated azo dyes by magnetite nanoparticles as potential electron transfer mediators. Chemosphere, 2021, 263, 128048.	8.2	13
110	The key role of biogenic manganese oxides in enhanced removal of highly recalcitrant 1,2,4-triazole from bio-treated chemical industrial wastewater. Environmental Science and Pollution Research, 2017, 24, 10570-10583.	5.3	12
111	Structural characteristics and microbial function of biofilm in membrane-aerated biofilm reactor for the biodegradation of volatile pyridine. Journal of Hazardous Materials, 2022, 437, 129370.	12.4	12
112	Reductive transformation and detoxification mechanism of 2,4-dinitrochlorobenzene in combined zero valent iron and anaerobic-aerobic process. Journal of Environmental Sciences, 2012, 24, 1900-1907.	6.1	11
113	Role of surfactants on the hydrolysis and acidogenesis of waste-activated sludge. Desalination and Water Treatment, 2016, 57, 16336-16345.	1.0	11
114	Nanosized amine-rich spheres embedded polymeric beads for Cr (VI) removal. Journal of Colloid and Interface Science, 2017, 508, 369-377.	9.4	11
115	Development of a 3D ordered macroporous RuO2 electrode for efficient pyrazole removal from water. Chemosphere, 2019, 237, 124471.	8.2	11
116	A novel acetogenic bacteria isolated from waste activated sludge and its potential application for enhancing anaerobic digestion performance. Journal of Environmental Management, 2020, 255, 109842.	7.8	11
117	Design and Construction of Cross-Linked PEO with the Integration of Helical Polyurethane as an Advanced All-Solid-State Polymer Electrolyte for Lithium Batteries. Journal of Chemical Education, 2020, 97, 3758-3765.	2.3	11
118	Evaluation of N-methylpyrrolidone bio-mineralization mechanism and bacterial community evolution under denitrification environment. Journal of Cleaner Production, 2022, 343, 130945.	9.3	11
119	Enhanced isophthalonitrile complexation-reduction removal using a novel anaerobic fluidized bed reactor in a bioelectrochemical system based on electric field activation (AFBR-EFA). Bioresource Technology, 2020, 306, 123115.	9.6	10
120	Biodirected Identification of Untargeted Toxicants in Industrial Wastewater Guides the Upgrading of Water Treatments. Environmental Science and Technology Letters, 2021, 8, 474-481.	8.7	10
121	Development of a Microalgal (<i>Chlorella</i>)-Bacterial (<i>Paracoccus</i>) Symbiotic System for Pyridine Biodegradation under Photosynthetic Oxygenation. ACS ES&T Water, 2021, 1, 356-365.	4.6	10
122	Enhanced p-nitrophenol removal in a membrane-free bio-contact coupled bioelectrochemical system. RSC Advances, 2015, 5, 27052-27059.	3.6	9
123	Co-processing of MSWI fly ash and copper smelting wastewater and the leaching behavior of the co-processing products in landfill leachate. Waste Management, 2019, 95, 628-635.	7.4	8
124	1H-1,2,4-Triazole biodegradation by newly isolated Raoultella sp.: A novel biodegradation pathway. Bioresource Technology Reports, 2019, 6, 63-69.	2.7	8
125	Carbon black supported on a Mn-MIL-100 framework as high-efficiency electrocatalysts for nitrophenol reduction. Journal of Electroanalytical Chemistry, 2021, 903, 115824.	3.8	8
126	Hydrolysis and acidification of waste activated sludge enhanced by zero valent iron-acid pretreatment: effect of pH. Desalination and Water Treatment, 2016, 57, 12099-12107.	1.0	7

#	Article	IF	CITATIONS
127	Electron pump strengthened facet engineering: Organic half-metallic C(CN)3 enclosed (100) facet exposed WO3 for efficient and selective photocatalytic nitrogen fixation. Applied Catalysis B: Environmental, 2022, 317, 121660.	20.2	7
128	The effect of Mg2+ on digestion performance and microbial community structures in sludge digestion systems. Environmental Science and Pollution Research, 2017, 24, 17474-17484.	5.3	6
129	Efficient removal of Sb(â) from water using sulphidated ferrihydrite via tripuhyite (FeSbO4) precipitation and complexation. Journal of Environmental Management, 2022, 309, 114675.	7.8	6
130	Density functional theoretical studies on effect of intramolecular hydrogen bonds on reduction of nitrophenols. Chemical Research in Chinese Universities, 2017, 33, 785-793.	2.6	5
131	Development of a novel recycling system for waste cathode ray tube funnel glass based on the integration of nanoscale FeO with ball milling. Waste Management, 2018, 76, 679-686.	7.4	5
132	Rapid and reversible adsorption of radioactive iodide from wastewaters by green and low-cost palygorskite-based microspheres. Journal of Radioanalytical and Nuclear Chemistry, 2020, 325, 303-313.	1.5	5
133	Reductive potential from cathode electrode as an option for the achievement of short-cut nitrification in bioelectrochemical systems. Bioresource Technology, 2021, 338, 125553.	9.6	5
134	Preparation of mesoporous crack-free Sb-SnO2 xerogels through ambient-pressure drying and its application as three-dimensional electrode. Journal of Sol-Gel Science and Technology, 2018, 86, 479-492.	2.4	4
135	Efficient removal of tylosin by nitrogen-doped mesoporous carbon nanospheres with tunable pore sizes. Environmental Science and Pollution Research, 2020, 27, 30844-30852.	5.3	3
136	Enhanced 4-chlorophenol biodegradation by integrating Fe2O3 nanoparticles into an anaerobic reactor: Long-term performance and underlying mechanism. Frontiers of Environmental Science and Engineering, 2022, $16, 1$.	6.0	3
137	Inverse opal-like marcoporous RuO2 electrodes for enhancing the mass transfer in electro-oxidation of tricyclazole. Journal of Porous Materials, 2020, 27, 1419-1430.	2.6	2
138	Synthesis of hollow anatase nanospheres with excellent adsorption and photocatalytic performances. RSC Advances, 2017, 7, 41399-41402.	3.6	0
139	Green rust-deposited MoS2 composites for the enhanced sequestration of EDTA-chelated Cu(II) from an aqueous solution. Journal of Molecular Liquids, 2021, 341, 117300.	4.9	O