Jinyou Shen

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/2755648/publications.pdf
Version: 2024-02-01

Controllable Synthesis of Functional Hollow Carbon Nanostructures with Dopamine As Precursor
for Supercapacitors. ACS Applied Materials \& Interfaces, 2015, 7, 18609-18617.

10 Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil. Journal of Hazardous Materials, 2009, 163, 1199-1206.

11	Nanostructured CoP: An efficient catalyst for degradation of organic pollutants by activating peroxymonosulfate. Journal of Hazardous Materials, 2017, 329, 92-101.	12.4	141
12	Electrochemical degradation of pyridine by Ti/SnO2â€"Sb tubular porous electrode. Chemosphere, 2016, 149, 49-56.	8.2	136
13	In-situ incorporation of iron-copper bimetallic particles in electrospun carbon nanofibers as an efficient Fenton catalyst. Applied Catalysis B: Environmental, 2017, 207, 316-325.	20.2	128

Efficient nitro reduction and dechlorination of 2,4-dinitrochlorobenzene through the integration of
14 bioelectrochemical system into upflow anaerobic sludge blanket: A comprehensive study. Water
Research, 2016, 88, 257-265.

15 Substantial enhancement of anaerobic pyridine bio-mineralization by electrical stimulation. Water
19
20 Improved electrochemical oxidation of tricyclazole from aqueous solution by enhancing mass
transfer in a tubular porous electrode electrocatalytic reactor. Electrochimica Acta, 2016, 189, 1-8.
5.2

83

Aerobic granulation accelerated by biochar for the treatment of refractory wastewater. Chemical Engineering Journal, 2017, 314, 88-97.
Biodegradation of 2,4,6-trinitrophenol (picric acid) in a biological aerated filter (BAF). Bioresource
Technology, 2009, 100, 1922-1930.

Biological denitrification of high-nitrate wastewater in a modified anoxic/oxic-membrane bioreactor (A/O-MBR). Journal of Hazardous Materials, 2009, 172, 595-600.

Biochar supported sulfide-modified nanoscale zero-valent iron for the reduction of nitrobenzene.
28 RSC Advances, 2018, 8, 22161-22168.
3.6

68
$\left.\begin{array}{ll}\text { Iron-tannin-framework complex modified PES ultrafiltration membranes with enhanced filtration } \\ \text { performance and fouling resistance. Journal of Colloid and Interface Science, 2017, } 505,642-652 .\end{array}\right) .9 .4$

Functional Group-Dependent Screening of Organophosphate Esters (OPEs) and Discovery of an
31 Abundant OPE Bis-(2-ethylhexyl)-phenyl Phosphate in Indoor Dust. Environmental Science \&
10.0

66
Technology, 2020, 54, 4455-4464.
32 Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater. Journal of Hazardous Materials, 2015, 295, 153-160.
12.4

64
Coupling of iron shavings into the anaerobic system for enhanced 2,4-dinitroanisole reduction in
wastewater. Water Research, 2016, 101, 457-466.
11.3

63

Conversion of waste FGD gypsum into hydroxyapatite for removal of $\mathrm{Pb} 2+$ and $\mathrm{Cd} 2+$ from wastewater.
Journal of Colloid and Interface Science, 2014, 429, 68-76.
9.4

61
37
38 Substantially enhanced anaerobic reduction of nitrobenzene by biochar stabilized sulfide-modified nanoscale zero-valent iron: Process and mechanisms. Environment International, 2019, 131, 105020.
10.0

59

Pretreatment of 2,4-dinitroanisole (DNAN) producing wastewater using a combined zero-valent iron (ZVI) reduction and Fenton oxidation process. Journal of Hazardous Materials, 2013, 260, 993-1000.

Organophosphate Ester, 2-Ethylhexyl Diphenyl Phosphate (EHDPP), Elicits Cytotoxic and
Transcriptomic Effects in Chicken Embryonic Hepatocytes and Its Biotransformation Profile Compared
to Humans. Environmental Science \& Technology, 2019, 53, 2151-2160.
$10.0 \quad 57$
to Humans. Environmental Science \& Technology, 2019, 53, 2151-2160.
40 Enhanced nitrobenzene reduction by modified biochar supported sulfidated nano zerovalent iron:
Comparison of surface modification methods. Science of the Total Environment, 2019, 694, 133701.
8.0

52
41
42

Prussian blue analogues-derived bimetallic iron-cobalt selenides for efficient overall water splitting.
Journal of Colloid and Interface Science, 2019, 548, 48-55.
$9.4 \quad 52$

Controlled synthesis of bimetallic Prussian blue analogues to activate peroxymonosulfate for
efficient bisphenol A degradation. Journal of Hazardous Materials, 2020, 387, 121701.
12.4

51

> Fouling behavior of polyethersulfone ultrafiltration membranes functionalized with solâ€ $€^{\prime \prime}$ gel formed
> ZnO nanoparticles. RSC Advances, 2015, 5, 50711-50719.
$3.6 \quad 50$

Controllable synthesis of N -doped hollow-structured mesoporous carbon spheres by an
44 amine-induced StÃ̈ber-silica/carbon assembly process. Journal of Materials Chemistry A, 2016, 4,
10.3 11916-11923.
45
46

Metalâ€"Organic Framework-Derived Hollow Carbon Nanocubes for Fast Solid-Phase Microextraction
of Polycyclic Aromatic Hydrocarbons. ACS Applied Materials \& Interfaces, 2018, 10, 15051-15057.

Simultaneous debromination and mineralization of bromophenol in an up-flow electricity-stimulated anaerobic system. Water Research, 2019, 157, 8-18.
47 Coaggregation mechanism of pyridine-degrading strains for the acceleration of the aerobic granulation process. Chemical Engineering Journal, 2018, 338, 176-183.
$12.7 \quad 49$

Electrochemical treatment of flutriafol wastewater using a novel 3D macroporous PbO 2 filter:
48 Operating parameters, mechanism and toxicity assessment. Journal of Hazardous Materials, 2018, 358,
12.4

187-197.

> Removal of phosphate from wastewater using alkaline residue. Journal of Environmental Sciences, $2014,26,970-980$.
$6.1 \quad 47$

Organic half-metal derived erythroid-like BiVO4/hm-C4N3 Z-Scheme photocatalyst: Reduction sites
$50 \quad$ upgrading and rate-determining step modulation for overall CO 2 and H 2 O conversion. Applied
20.2

47
Catalysis B: Environmental, 2021, 295, 120277.
51 Bioelectrochemical system for recalcitrant p-nitrophenol removal. Journal of Hazardous Materials, 2012, 209-210, 516-519.
12.4

Fabrication of polypyrrole/ $\hat{1}-\mathrm{MnO} 2$ modified graphite felt anode for enhancing recalcitrant phenol degradation in a bioelectrochemical system. Electrochimica Acta, 2017, 244, 119-128.

[^0]9.6

44

Bioaugmentation potential of a newly isolated strain Sphingomonas sp. NJUST37 for the treatment of wastewater containing highly toxic and recalcitrant tricyclazole. Bioresource Technology, 2018, 264, 98-105.

Role of molecular structure on bioelectrochemical reduction of mononitrophenols from

57 Enhanced anoxic biodegradation of pyridine coupled to nitrification in an inner loop
anoxic/oxic-dynamic membrane bioreactor (A/O-DMBR). Bioresource Technology, 2018, 267, 626-633.

In situ no-slot joint integration of half-metallic $\mathrm{C}(\mathrm{CN}) 3$ cocatalyst into g-C3N4 scaffold: An absolute
58 metal-free in-plane heterosystem for efficient and selective photoconversion of CO 2 into CO. Applied
20.241 Catalysis B: Environmental, 2020, 264, 118470.

Biodegradation kinetics of picric acid by Rhodococcus sp. NJUST16 in batch reactors. Journal of
Hazardous Materials, $2009,167,193-198$.
12.4

Hazardous Materials, 2009, 167, 193-198.
40

Advanced treatment of triazole fungicides discharged water in pilot scale by integrated system:
60 Enhanced electrochemical oxidation, upflow biological aerated filter and electrodialysis. Chemical
12.7

40
Engineering Journal, 2017, 315, 335-344.
61 Enhanced $\mathrm{Cr}(\mathrm{VI})$ removal in the synergy between the hydroxyl-functionalized ball-milled ZVI/Fe3O4
composite and Na2EDTA complexation. Chemical Engineering Journal, 2019, 359, 874-881.
$12.7 \quad 38$

62 Bioaugmentation strategy for the treatment of fungicide wastewater by two triazole-degrading
strains. Chemical Engineering Journal, 2018, 349, 17-24.
12.7

36
Deep-Eutectic Solvents Derived Nitrogen-Doped Graphitic Carbon as a Superior Electrocatalyst for
Oxygen Reduction. ACS Applied Materials \& Interfaces, 2017, 9, 32737-32744.

Recycle of Fenton sludge through one-step synthesis of aminated magnetic hydrochar for $\mathrm{Pb} 2+$
64 removal from wastewater. Journal of Hazardous Materials, 2021, 406, 124581.
12.4

34

Electrochemical treatment of anticancer drugs wastewater containing 5-Fluoro-2-Methoxypyrimidine
using a tubular porous electrode electrocatalytic reactor. Electrochimica Acta, 2016, 220, 211-221.
Electrospun mulberry-like hierarchical carbon fiber web for high-performance supercapacitors.
66 Journal of Colloid and Interface Science, 2018, 512, 713-721.
9.4

33

A novel approach for recovery of metals from waste printed circuit boards and simultaneous
67 removal of iron from steel pickling waste liquor by two-step hydrometallurgical method. Waste
7.4

31
Management, 2018, 71, 411-419.
Preparation and characterization of $\mathrm{TiO}\langle s u b\rangle 2</ s u b\rangle-\mathrm{NT} / \mathrm{SnO}<$ sub $>2</ s u b\rangle \mathrm{a} €^{\prime \prime} \mathrm{Sb}$ tubular porous
68 electrode with long service lifetime for wastewater treatment process. RSC Advances, 2017, 7 ,
3.6

29
37806-37814.

69 Co-metabolic enhancement of 1H-1,2,4-triazole biodegradation through nitrification. Bioresource
Technology, 2019, 271, 236-243.
9.6

29

Enhancing anaerobic digestion of waste activated sludge by the combined use of NaOH and $\mathrm{Mg}(\mathrm{OH}) 2$:
Performance evaluation and mechanism study. Bioresource Technology, 2016, 220, 601-608.

Construction and application of a 1-liter upflow-stacked microbial desalination cell. Chemosphere,

Bioaugmentation of a continuous-flow self-forming dynamic membrane bioreactor for the treatment 76 of wastewater containing high-strength pyridine. Environmental Science and Pollution Research, 2017, 24, 3437-3447.
77 Electricity-stimulated anaerobic system (ESAS) for enhanced energy recovery and pollutant removal:
BiVO4/FeOOH semiconductor-microbe interface for enhanced visible-light-driven biodegradation of
pyridine. Water Research, 2020, 187, 116464.

80 Optimization ofS/Fe ratio for enhanced nitrobenzene biological removal in anaerobicSystem amended withSulfide-modified nanoscale zerovalent iron. Chemosphere, 2020, $247,125832$.
$8.2 \quad 23$
Fabrication of ordered mesoporous carbon hollow fiber membranes via a confined soft templating
approach. Journal of Materials Chemistry A, 2014, 2, 4144-4149.

$82 \quad$| Simultaneous removal of pyridine and denitrification in an integrated bioelectro-photocatalytic |
| :--- |
| system utilizing N-doped graphene $/ \hat{I} \pm-F e 2 \mathrm{O} 3$ modified photoanode. Electrochimica Acta, 2021, $366,137425$. |

In-situ construction of 3D marigold-like CoAl-LDH/Ti3C2 heterosystem collaborating with 2D/2D
interface for efficient photodegradation of multiple antibiotics. Applied Surface Science, 2021,569,
151084.

Enhanced bio-photodegradation of p-chlorophenol by CdS/g-C3N4 3D semiconductor-microbe interfaces. Science of the Total Environment, 2022, 807, 151006.
8.0

22

Kinetics study of pyridine biodegradation by a novel bacterial strain, Rhizobium sp. NJUST18. Bioprocess and Biosystems Engineering, 2014, 37, 1185-1192.

Hollow mesoporous carbon spheres-based fiber coating for solid-phase microextraction of polycyclic aromatic hydrocarbons. Journal of Chromatography A, 2017, 1520, 58-64.
3.7

20

Ag-TiO2/biofilm/nitrate interface enhanced visible light-assisted biodegradation of tetracycline: The
11.3
key role of nitrate as the electron accepter. Water Research, 2022, 215, 118212.
20

Ordered mesoporous carbon film as an effective solid-phase microextraction coating for determination of benzene series from aqueous media. Analytica Chimica Acta, 2015, 888, 85-93.
91. Enhanced bioelectrochemical reduction of p-nitrophenols in the cathode of self-driven microbial fuel cells. RSC Advances, 2016, 6, 29072-29079.

Simultaneous high-concentration pyridine removal and denitrification in an electricity assisted bio-photodegradation system. Chemical Engineering Journal, 2022, 430, 132598.

Enhanced reductive transformation of 2,4-dinitroanisole in a anaerobic system: the key role of zero
3.6 valent iron. RSC Advances, 2015, 5, 75195-75203.

Synthesis of Ag@SiO₂ yolkâe"shell nanoparticles for hydrogen peroxide detection. RSC Advances, 2015, 5, 17372-17378.

Promotion of Para-Chlorophenol Reduction and Extracellular Electron Transfer in an Anaerobic System at the Presence of Iron-Oxides. Frontiers in Microbiology, 2018, 9, 2052.
3.5

Removal of lead complexes by ferrous phosphate and iron phosphate: Unexpected favorable role of ferrous ions. Journal of Hazardous Materials, 2020, 392, 122509.
12.4

Ordered mesoporous silica film as a novel fiber coating for solid-phase microextraction. Talanta, 2017, 174, 307-313.

Pesticide tailwater deeply treated by tubular porous electrode reactor (TPER): Purpose for discharging and cost saving. Chemosphere, 2017, 185, 86-93.

Efficient and rapid removal of EDTA-chelated Pb (II) by the Fe (III)/flue gas desulfurization gypsum (FGDG)
system. Journal of Colloid and Interface Science, 2019, 542, 379-386.

New insight into increased toxicity during ozonation of chlorophenol: The significant contribution of oxidizing intermediates. Science of the Total Environment, 2021, 769, 144569.

Rapid sequestration of chelated $\mathrm{Cr}(\mathrm{III})$ by ferrihydrite: Adsorption and overall transformation of
101 Cr(III) complexes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126819.
Facile preparation of novel magnetic mesoporous Fe Mn binary oxides from Mn encapsulated
102 carboxymethyl cellulose-Fe (III) hydrogel for antimony removal from water. Science of the Total Environment, 2022, 821, 153529.

103 Hydrolysis and volatile fatty acids accumulation of waste activated sludge enhanced by the combined use of nitrite and alkaline pH. Environmental Science and Pollution Research, 2015, 22, 18793-18800.

Low dose of sulfur-modified zero-valent iron for decontamination of trace $\mathrm{Cd}(\mathrm{II})$-complexes in high-salinity wastewater. Science of the Total Environment, 2021, 793, 148579.
8.0

Synthesis of magnetic hydrochar from Fenton sludge and sewage sludge for enhanced anaerobic decolorization of azo dye AO7. Journal of Hazardous Materials, 2022, 424, 127622.
12.4

15

Biomassâ€ tnduced Diphasic Carbon Decoration for Carbon Nitride: Band and Electronic Engineering Targeting Efficient N₂ Photofixation. Small, 2022, 18, e2105217.
10.0

14

Novel strategy for membrane biofouling control in MBR with nano-MnO2 modified PVDF membrane by in-situ ozonation. Science of the Total Environment, 2022, 808, 151996.
8.0

14

The key role of biogenic manganese oxides in enhanced removal of highly recalcitrant 1,2,4-triazole
110 from bio-treated chemical industrial wastewater. Environmental Science and Pollution Research,

11 Structural characteristics and microbial function of biofilm in membrane-aerated biofilm reactor for

Reductive transformation and detoxification mechanism of 2,4-dinitrochlorobenzene in combined zero valent iron and anaerobic-aerobic process. Journal of Environmental Sciences, 2012, 24, 1900-1907.113 Role of surfactants on the hydrolysis and acidogenesis of waste-activated sludge. Desalination and

Nanosized amine-rich spheres embedded polymeric beads for $\mathrm{Cr}(\mathrm{VI})$ removal. Journal of Colloid and Interface Science, 2017, 508, 369-377.
115 Development of a 3D ordered macroporous RuO2 electrode for efficient pyrazole removal from water. Chemosphere, 2019, 237, 124471.
$8.2 \quad 11$

A novel acetogenic bacteria isolated from waste activated sludge and its potential application for enhancing anaerobic digestion performance. Journal of Environmental Management, 2020, 255, 109842.

Design and Construction of Cross-Linked PEO with the Integration of Helical Polyurethane as an
117 Advanced All-Solid-State Polymer Electrolyte for Lithium Batteries. Journal of Chemical Education, 2.3 2020, 97, 3758-3765.

118 Evaluation of N-methylpyrrolidone bio-mineralization mechanism and bacterial community evolution under denitrification environment. Journal of Cleaner Production, 2022, 343, 130945.

Enhanced p-nitrophenol removal in a membrane-free bio-contact coupled bioelectrochemical system. RSC Advances, 2015, 5, 27052-27059.

9
Electron pump strengthened facet engineering: Organic half-metallic C(CN)3 enclosed (100) facet
exposed WO3 for efficient and selective photocatalytic nitrogen fixation. Applied Catalysis B:
Environmental, 2022, 317, 121660.

128 The effect of Mg2+ on digestion performance and microbial community structures in sludge digestion systems. Environmental Science and Pollution Research, 2017, 24, 17474-17484.
5.3

6
120 Efficient removal of $\mathrm{Sb}(\hat{a} . .$.$) from water using sulphidated ferrihydrite via tripuhyite (FeSbO4)$
129 precipitation and complexation. Journal of Environmental Management, 2022, 309, 114675.
$7.8 \quad 6$

Density functional theoretical studies on effect of intramolecular hydrogen bonds on reduction of integration of nanoscale Fe0 with ball milling. Waste Management, 2018, 76, 679-686.

Rapid and reversible adsorption of radioactive iodide from wastewaters by green and low-cost palygorskite-based microspheres. Journal of Radioanalytical and Nuclear Chemistry, 2020, 325, 303-313.
1.5

5

$135 \quad$| Efficient removal of tylosin by nitrogen-doped mesoporous carbon nanospheres with tunable pore |
| :--- |
| sizes. Environmental Science and Pollution Research, 2020, 27,30844-30852. |

Enhanced 4-chlorophenol biodegradation by integrating Fe2O3 nanoparticles into an anaerobic 136 reactor: Long-term performance and underlying mechanism. Frontiers of Environmental Science and Engineering, 2022, 16, 1.

$$
\begin{aligned}
& \text { Inverse opal-like marcoporous } \mathrm{RuO} 2 \text { electrodes for enhancing the mass transfer in electro-oxidation } \\
& \text { of tricyclazole. Journal of Porous Materials, 2020, 27, 1419-1430. }
\end{aligned}
$$

Synthesis of hollow anatase nanospheres with excellent adsorption and photocatalytic performances. RSC Advances, 2017, 7, 41399-41402.

[^0]: Comprehensive comparison of bacterial communities in a membrane-free bioelectrochemical system
 53 for removing different mononitrophenols from wastewater. Bioresource Technology, 2016, 216,
 645-652.

