
Shuixing Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2755562/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-armed imide-based molecules promote interfacial charge transfer for efficient organic solar cells. Chemical Engineering Journal, 2022, 441, 135894.	12.7	9
2	Photophysical pathways in efficient bilayer organic solar cells: The importance of interlayer energy transfer. Nano Energy, 2021, 84, 105924.	16.0	33
3	Effects of Fluorination Position on Fusedâ€Ring Electron Acceptors. Small Structures, 2020, 1, 2000006.	12.0	8
4	Ternary Blending Driven Molecular Reorientation of Non-Fullerene Acceptor IDIC with Backbone Order. ACS Applied Energy Materials, 2020, 3, 10814-10822.	5.1	15
5	Enabling Highâ€Performance Tandem Organic Photovoltaic Cells by Balancing the Front and Rear Subcells. Advanced Materials, 2020, 32, e2002315.	21.0	25
6	Highly Conjugated, Fused-Ring, Quadrupolar Organic Chromophores with Large Two-Photon Absorption Cross-Sections in the Near-Infrared. Journal of Physical Chemistry A, 2020, 124, 4367-4378.	2.5	20
7	Highâ€Performance Nonfullerene Organic Solar Cells with Unusual Inverted Structure. Solar Rrl, 2020, 4, 2000115.	5.8	21
8	Highâ€Performance Fluorinated Fusedâ€Ring Electron Acceptor with 3D Stacking and Exciton/Charge Transport. Advanced Materials, 2020, 32, e2000645.	21.0	122
9	Utilizing Difluorinated Thiophene Units To Improve the Performance of Polymer Solar Cells. Macromolecules, 2019, 52, 6523-6532.	4.8	14
10	High-performance organic solar cells based on polymer donor/small molecule donor/nonfullerene acceptor ternary blends. Journal of Materials Chemistry A, 2019, 7, 2268-2274.	10.3	42
11	Modulating morphology via side-chain engineering of fused ring electron acceptors for high performance organic solar cells. Science China Chemistry, 2019, 62, 790-796.	8.2	26
12	The impact of fluorination on both donor polymer and non-fullerene acceptor: The more fluorine, the merrier. Nano Research, 2019, 12, 2400-2405.	10.4	28
13	Enhancing the Performance of Polymer Solar Cells via Core Engineering of NIRâ€Absorbing Electron Acceptors. Advanced Materials, 2018, 30, e1706571.	21.0	309
14	Enhancing the performance of the electron acceptor ITIC-Th <i>via</i> tailoring its end groups. Materials Chemistry Frontiers, 2018, 2, 537-543.	5.9	46
15	Fused Tris(thienothiophene)â€Based Electron Acceptor with Strong Nearâ€Infrared Absorption for Highâ€Performance Asâ€Cast Solar Cells. Advanced Materials, 2018, 30, 1705969.	21.0	340
16	Naphthodithiopheneâ€Based Nonfullerene Acceptor for Highâ€Performance Organic Photovoltaics: Effect of Extended Conjugation. Advanced Materials, 2018, 30, 1704713.	21.0	199
17	Breaking 10% Efficiency in Semitransparent Solar Cells with Fused-Undecacyclic Electron Acceptor. Chemistry of Materials, 2018, 30, 239-245.	6.7	167
18	High-performance ternary organic solar cells with photoresponses beyond 1000 nm. Journal of Materials Chemistry A, 2018, 6, 24210-24215.	10.3	31

SHUIXING DAI

#	Article	lF	CITATIONS
19	High-Performance Fused Ring Electron Acceptor–Perovskite Hybrid. Journal of the American Chemical Society, 2018, 140, 14938-14944.	13.7	71
20	Convenient fabrication of conjugated polymer semiconductor nanotubes and their application in organic electronics. Royal Society Open Science, 2018, 5, 180868.	2.4	2
21	Effect of Core Size on Performance of Fused-Ring Electron Acceptors. Chemistry of Materials, 2018, 30, 5390-5396.	6.7	102
22	Nonfullerene Acceptors for Semitransparent Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1800002.	19.5	160
23	Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells. Journal of the American Chemical Society, 2017, 139, 1336-1343.	13.7	813
24	Singleâ€Junction Binaryâ€Blend Nonfullerene Polymer Solar Cells with 12.1% Efficiency. Advanced Materials, 2017, 29, 1700144.	21.0	629
25	A perylene diimide based polymer: a dual function interfacial material for efficient perovskite solar cells. Materials Chemistry Frontiers, 2017, 1, 1079-1086.	5.9	51
26	Fluorinated fused nonacyclic interfacial materials for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 21414-21421.	10.3	59
27	Perylene and naphthalene diimide copolymers for allâ€polymer solar cells: Effect of perylene/naphthalene ratio. Journal of Polymer Science Part A, 2017, 55, 682-689.	2.3	19
28	Efficient and stable organic solar cells via a sequential process. Journal of Materials Chemistry C, 2016, 4, 8086-8093.	5.5	45
29	Oligothiophene-bridged perylene diimide dimers for fullerene-free polymer solar cells: effect of bridge length. Journal of Materials Chemistry A, 2015, 3, 13000-13010.	10.3	45