Raul De la Rosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2755329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantification of dwarfing effect of different rootstocks in â€~Picual' olive cultivar using UAV-photogrammetry. Precision Agriculture, 2022, 23, 178-193.	6.0	8
2	Enhancing the sustainability of Mediterranean olive groves through adaptation measures to climate change using modelling and response surfaces. Agricultural and Forest Meteorology, 2022, 313, 108742.	4.8	6
3	Utility of EST-SNP Markers for Improving Management and Use of Olive Genetic Resources: A Case Study at the Worldwide Olive Germplasm Bank of Córdoba. Plants, 2022, 11, 921.	3.5	20
4	Seedling Selection in Olive Breeding Progenies. Plants, 2022, 11, 1195.	3.5	5
5	Floral Quality Characterization in Olive Progenies from Reciprocal Crosses. Plants, 2022, 11, 1285.	3.5	1
6	Chemical components influencing oxidative stability and sensorial properties of extra virgin olive oil and effect of genotype and location on their expression. LWT - Food Science and Technology, 2021, 136, 110257.	5.2	21
7	High-throughput analysis of the canopy traits in the worldwide olive germplasm bank of CÃ ³ rdoba using very high-resolution imagery acquired from unmanned aerial vehicle (UAV). Scientia Horticulturae, 2021, 278, 109851.	3.6	18
8	A new approach for early selection of short juvenile period in olive progenies. Scientia Horticulturae, 2021, 281, 109993.	3.6	5
9	Verticillium wilt resistant and susceptible olive cultivars express a very different basal set of genes in roots. BMC Genomics, 2021, 22, 229.	2.8	11
10	Verticillium Wilt Evaluation of Olive Breeding Selections Under Semi-Controlled Conditions. Plant Disease, 2021, 105, 1781-1790.	1.4	11
11	Prioritization of olive breeding objectives in Spain: Analysis of a producers and researchers survey. Spanish Journal of Agricultural Research, 2021, 19, e0701.	0.6	5
12	Phenolic variability in fruit from the â€~Arbequina' olive cultivar under Mediterranean and Subtropical climatic conditions. Grasas Y Aceites, 2021, 72, e438.	0.9	5
13	Differences on flowering phenology under Mediterranean and Subtropical environments for two representative olive cultivars. Environmental and Experimental Botany, 2020, 180, 104239.	4.2	18
14	Genetic and Environmental Effect on Volatile Composition of Extra Virgin Olive Oil. European Journal of Lipid Science and Technology, 2020, 122, 2000162.	1.5	5
15	EST–SNP Study of Olea europaea L. Uncovers Functional Polymorphisms between Cultivated and Wild Olives. Genes, 2020, 11, 916.	2.4	15
16	Transposon activation is a major driver in the genome evolution of cultivated olive trees (<i>Olea) Tj ETQq0 0 0 r</i>	gBT /Overl	ock 10 Tf 50

17	Genotype by environment interaction for oil quality components in olive tree. European Journal of Agronomy, 2020, 119, 126115.	4.1	20
18	Evaluation of early vigor traits in wild olive germplasm. Scientia Horticulturae, 2020, 264, 109157.	3.6	6

#	Article	IF	CITATIONS
19	Phenological diversity in a World Olive Germplasm Bank: Potential use for breeding programs and climate change studies. Spanish Journal of Agricultural Research, 2020, 18, e0701.	0.6	15
20	Evaluation of the Phytopathological Reaction of Wild and Cultivated Olives as a Means of Finding Promising New Sources of Genetic Diversity for Resistance to Root-Knot Nematodes. Plant Disease, 2019, 103, 2559-2568.	1.4	9
21	Analysis of Olive (Olea Europaea L.) Genetic Resources in Relation to the Content of Vitamin E in Virgin Olive Oil. Antioxidants, 2019, 8, 242.	5.1	21
22	Genotype, environment and their interaction effects on olive tree flowering phenology and flower quality. Euphytica, 2019, 215, 1.	1.2	21
23	Multi-environment evaluation of oil accumulation pattern parameters in olive. Plant Physiology and Biochemistry, 2019, 139, 485-494.	5.8	26
24	Plasticity of fruit and oil traits in olive among different environments. Scientific Reports, 2019, 9, 16968.	3.3	38
25	GC-QTOF-MS as valuable tool to evaluate the influence of cultivar and sample time on olive leaves triterpenic components. Food Research International, 2019, 115, 219-226.	6.2	21
26	A survey of ethanol content in virgin olive oil. Food Control, 2018, 91, 248-253.	5.5	16
27	Evaluation of olive response and adaptation strategies to climate change under semi-arid conditions. Agricultural Water Management, 2018, 204, 247-261.	5.6	44
28	Flowering phenology and flower quality of cultivars â€~Arbequina', â€~Koroneiki' and â€~Picual' in diff environments of southern Spain. Acta Horticulturae, 2018, , 257-262.	erent 0.2	4
29	Usefulness of a New Large Set of High Throughput EST-SNP Markers as a Tool for Olive Germplasm Collection Management. Frontiers in Plant Science, 2018, 9, 1320.	3.6	57
30	Using Wild Olives in Breeding Programs: Implications on Oil Quality Composition. Frontiers in Plant Science, 2018, 9, 232.	3.6	33
31	Fruit Phenolic Profiling: A New Selection Criterion in Olive Breeding Programs. Frontiers in Plant Science, 2018, 9, 241.	3.6	29
32	Assessment of olive diversity for metabolites associated with the nutritional and sensory quality of virgin olive oil. Acta Horticulturae, 2018, , 517-522.	0.2	0
33	New olive cultivars and selections in Spain: results after 25 years of breeding. Acta Horticulturae, 2018, , 21-26.	0.2	8
34	Pollen-mediated gene flow and fine-scale spatial genetic structure in <i>Olea europaea</i> subsp. <i>europaea</i> var. <i>sylvestris</i> . Annals of Botany, 2017, 119, mcw246.	2.9	15
35	Mapping quantitative trait loci controlling fatty acid composition in olive. Euphytica, 2017, 213, 1.	1.2	16
36	Impact of changes in mean and extreme temperatures caused by climate change on olive flowering in southern Spain. International Journal of Climatology, 2017, 37, 940-957.	3.5	56

#	Article	IF	CITATIONS
37	Tree crown parameters assessment using 3D photo reconstruction as a tool for selection in olive breeding programs. Acta Horticulturae, 2017, , 1-4.	0.2	3
38	From Olive Fruits to Olive Oil: Phenolic Compound Transfer in Six Different Olive Cultivars Grown under the Same Agronomical Conditions. International Journal of Molecular Sciences, 2016, 17, 337.	4.1	66
39	Transcriptomic Analysis Using Olive Varieties and Breeding Progenies Identifies Candidate Genes Involved in Plant Architecture. Frontiers in Plant Science, 2016, 7, 240.	3.6	25
40	Early selection for oil quality components in olive breeding progenies. European Journal of Lipid Science and Technology, 2016, 118, 1160-1167.	1.5	38
41	Optimal spatial and temporal replications for reducing environmental variation for oil content components and fruit morphology traits in olive breeding. Euphytica, 2016, 207, 675-684.	1.2	15
42	Assessment of volatile compound profiles and the deduced sensory significance of virgin olive oils from the progeny of PicualÄ—Arbequina cultivars. Journal of Chromatography A, 2016, 1428, 305-315.	3.7	31
43	Genetic Mapping and Detection of Quantitative Trait Loci. Compendium of Plant Genomes, 2016, , 65-74.	0.5	3
44	High-Resolution Airborne UAV Imagery to Assess Olive Tree Crown Parameters Using 3D Photo Reconstruction: Application in Breeding Trials. Remote Sensing, 2015, 7, 4213-4232.	4.0	263
45	Evaluation of Verticillium wilt resistance in selections from olive breeding crosses. Euphytica, 2015, 206, 619-629.	1.2	22
46	Resistance to Verticillium wilt in olive progenies from open-pollination. Scientia Horticulturae, 2015, 185, 34-42.	3.6	29
47	Chemometric Analysis for the Evaluation of Phenolic Patterns in Olive Leaves from Six Cultivars at Different Growth Stages. Journal of Agricultural and Food Chemistry, 2015, 63, 1722-1729.	5.2	58
48	Pre-breeding for resistance to Verticillium wilt in olive: Fishing in the wild relative gene pool. Crop Protection, 2015, 75, 25-33.	2.1	32
49	Pattern of Variation of Fruit Traits and Phenol Content in Olive Fruits from Six Different Cultivars. Journal of Agricultural and Food Chemistry, 2015, 63, 10466-10476.	5.2	36
50	Transcriptional analysis of adult cutting and juvenile seedling olive roots. Tree Genetics and Genomes, 2015, 11, 1.	1.6	7
51	Initial selection steps in olive breeding programs. Euphytica, 2015, 201, 453-462.	1.2	16
52	Relative Susceptibility of New Olive Cultivars to <i>Spilocaea oleagina, Colletotrichum acutatum</i> , and <i>Pseudocercospora cladosporioides</i> . Plant Disease, 2015, 99, 58-64.	1.4	17
53	Plasticity in Vegetative Growth over Contrasted Growing Sites of an F1 Olive Tree Progeny during Its Juvenile Phase. PLoS ONE, 2015, 10, e0127539.	2.5	11
54	Advanced olive selections with enhanced quality for minor constituents. Grasas Y Aceites, 2015, 66, e100.	0.9	7

#	Article	IF	CITATIONS
55	Variability of Virgin Olive Oil Phenolic Compounds in a Segregating Progeny from a Single Cross in Olea europaea L. and Sensory and Nutritional Quality Implications. PLoS ONE, 2014, 9, e92898.	2.5	44
56	Selection for Some Olive Oil Quality Components Through the Analysis of Fruit Flesh. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1731-1736.	1.9	20
57	Genetic changes involved in the juvenile-to-adult transition in the shoot apex of Olea europaea L. occur years before the first flowering. Tree Genetics and Genomes, 2014, 10, 585.	1.6	20
58	Determination of phenolic compounds of â€~Sikitita' olive leaves by HPLC-DAD-TOF-MS. Comparison with its parents â€~Arbequina' and â€~Picual' olive leaves. LWT - Food Science and Technology, 2014, 58, 28-	34. ^{5.2}	134
59	Variability and heritability of fruit characters in olive progenies from open-pollination. Scientia Horticulturae, 2014, 169, 94-98.	3.6	16
60	Identification of QTL for agronomic traits of importance for olive breeding. Molecular Breeding, 2014, 34, 725.	2.1	31
61	VEGETATIVE GROWTH HABIT AND EARLINESS OF BEARING OF DIFFERENT OLIVE CULTIVARS. Acta Horticulturae, 2014, , 411-416.	0.2	1
62	CURRENT STATUS OF CONSERVATION, EVALUATION AND USEFULNESS OF WILD OLIVE GERMPLASM. Acta Horticulturae, 2014, , 515-519.	0.2	15
63	SCREENING OF WILD OLIVES FOR VERTICILLIUM WILT RESISTANCE. Acta Horticulturae, 2014, , 559-563.	0.2	1
64	Agronomic evaluation of seedlings from crosses between the main Spanish olive cultivar â€~Picual' and two wild olive trees. Journal of Horticultural Science and Biotechnology, 2014, 89, 508-512.	1.9	19
65	Floral quality components of a new olive cultivar and its parents. Scientia Horticulturae, 2013, 154, 17-19.	3.6	13
66	Use of DArT markers as a means of better management of the diversity of olive cultivars. Food Research International, 2013, 54, 2045-2053.	6.2	31
67	Fruit characteristics and fatty acid composition in advanced olive breeding selections along the ripening period. Food Research International, 2013, 54, 1890-1896.	6.2	40
68	Changes in squalene and sterols associated with olive maturation. Food Research International, 2013, 54, 1885-1889.	6.2	64
69	Female genitor effect on the juvenile period of olive seedlings. Scientia Horticulturae, 2013, 156, 99-105.	3.6	11
70	Utility of wild germplasm in olive breeding. Scientia Horticulturae, 2013, 152, 92-101.	3.6	43
71	De Novo Assembly and Functional Annotation of the Olive (Olea europaea) Transcriptome. DNA Research, 2013, 20, 93-108.	3.4	84
72	FRUIT AND OIL CHARACTERISTICS OF ADVANCED SELECTIONS FROM AN OLIVE BREEDING PROGRAM. Acta Horticulturae, 2013, , 415-419.	0.2	2

#	Article	IF	CITATIONS
73	Development of EST-derived SSR Markers with Long-core Repeat in Olive and Their Use for Paternity Testing. Journal of the American Society for Horticultural Science, 2013, 138, 290-296.	1.0	38
74	Characterisation and identification of olive cultivars from North-eastern Algeria using molecular markers. Journal of Horticultural Science and Biotechnology, 2012, 87, 95-100.	1.9	24
75	Microsatellite marker-based identification of mother plants for the reliable propagation of olive (<i>Olea europaea</i> L.) cultivars in Australia. Journal of Horticultural Science and Biotechnology, 2012, 87, 647-653.	1.9	14
76	OVERCOMING JUVENILITY IN AN OLIVE BREEDING PROGRAM. Acta Horticulturae, 2012, , 221-226.	0.2	2
77	Development of DArT markers in olive (Olea europaea L.) and usefulness in variability studies and genome mapping. Scientia Horticulturae, 2012, 136, 50-60.	3.6	37
78	Reliable and relevant qualitative descriptors for evaluating complex architectural traits in olive progenies. Scientia Horticulturae, 2012, 143, 157-166.	3.6	15
79	Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs,) Tj ETQq1 1 0.	784314 rg 1.6	gBT /Overlock 241
80	Variability of wild olives (Olea europaea subsp. europaea var. sylvestris) analyzed by agro-morphological traits and SSR markers. Scientia Horticulturae, 2011, 129, 561-569.	3.6	85
81	Early growth habit and vigour parameters in olive seedlings. Scientia Horticulturae, 2011, 129, 761-768.	3.6	17
82	Pigment Metabolism of â€~Sikitita' Olive (Olea europaea L.): A New Cultivar Obtained by Cross-Breeding. Journal of Agricultural and Food Chemistry, 2011, 59, 2049-2055.	5.2	10
83	ADVANCES IN THE JOINT UCO-IFAPA OLIVE BREEDING PROGRAM (JOBP). Acta Horticulturae, 2011, , 283-290.	0.2	2
84	EARLINESS OF BEARING IN OLIVE PROGENIES. Acta Horticulturae, 2011, , 341-347.	0.2	3
85	High-Throughput Sequencing of RNA Silencing-Associated Small RNAs in Olive (Olea europaea L.). PLoS ONE, 2011, 6, e27916.	2.5	52
86	Oil composition of advanced selections from an olive breeding program. European Journal of Lipid Science and Technology, 2011, 113, 870-875.	1.5	47
87	May Soil Solarization Reduce the Juvenile Period in Olive?. Hortscience: A Publication of the American Society for Hortcultural Science, 2011, 46, 1241-1244.	1.0	2
88	Identification of a gene involved in the juvenile-to-adult transition (JAT) in cultivated olive trees. Tree Genetics and Genomes, 2010, 6, 891-903.	1.6	24
89	Olive seedling first-flowering position and management. Scientia Horticulturae, 2010, 124, 74-77.	3.6	22
90	Optimizing Early Flowering and Pre-selection for Short Juvenile Period in Olive Seedlings. Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 519-522.	1.0	8

#	Article	IF	CITATIONS
91	Morphological and anatomical evaluation of adult and juvenile leaves of olive plants. Trees - Structure and Function, 2009, 23, 181-187.	1.9	22
92	A gene for susceptibility to the fungicide azoxystrobin in apple and a tightly linked microsatellite marker. Plant Breeding, 2009, 128, 312-316.	1.9	2
93	INTER-COMPATIBILITY RELATIONSHIPS IN OLIVE AS REVEALED BY PATERNITY TESTS WITH SSR MARKERS. Acta Horticulturae, 2009, , 659-662.	0.2	3
94	MORPHOLOGICAL AND HISTOLOGICAL CHARACTERISTICS RELATED WITH PHASE CHANGE (JUVENILE/ADULT) IN OLIVE LEAVES AND ITS DETERMINATION BY NEAR INFRARED REFLECTANCE SPECTROSCOPY. Acta Horticulturae, 2009, , 449-452.	0.2	1
95	Fatty acid composition of advanced olive selections obtained by crossbreeding. Journal of the Science of Food and Agriculture, 2008, 88, 1921-1926.	3.5	56
96	Ripening time and fruit characteristics of advanced olive selections for oil production. Australian Journal of Agricultural Research, 2008, 59, 46.	1.5	27
97	INFLUENCE OF HARVEST DATE ON THE GERMINATION AND EMERGENCY OF SEEDS OF FIVE OLIVE CULTIVARS. Acta Horticulturae, 2008, , 187-189.	0.2	0
98	SEEDLING HEIGHT AS A PRE-SELECTION CRITERION FOR SHORT JUVENILE PERIOD IN OLIVE SEEDLINGS. Acta Horticulturae, 2008, , 61-64.	0.2	0
99	MOLECULAR MARKERS IN OLIVE: AN INTEGRATED APPROACH. Acta Horticulturae, 2008, , 45-48.	0.2	4
100	High Susceptibility of Olive Cultivar FS-17 to <i>Alternaria alternata</i> in Southern Spain. Plant Disease, 2008, 92, 1252-1252.	1.4	18
101	â€ [~] Chiquitita' Olive. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 529-531.	1.0	77
102	CULTIVAR IDENTIFICATION AND ELUCIDATION OF GENETIC RELATIONSHIPS WITHIN THE SPECIES OLEA EUROPAEA L. USING MICROSATELLITES. Acta Horticulturae, 2008, , 79-86.	0.2	0
103	DEVELOPMENT AND CHARACTERIZATION OF 12 NEW MICROSATELLITES IN OLIVE (OLEA EUROPAEA L.). Acta Horticulturae, 2008, , 87-93.	0.2	0
104	Preliminary results of an olive cultivar trial at high density. Australian Journal of Agricultural Research, 2007, 58, 392.	1.5	51
105	Selections of an Olive Breeding Program Identified by Microsatellite Markers. Crop Science, 2007, 47, 2317-2322.	1.8	15
106	Breeding for Early Bearing in Olive. Hortscience: A Publication of the American Society for Hortcultural Science, 2007, 42, 499-502.	1.0	50
107	Cross-compatibility of the Parents as the Main Factor for Successful Olive Breeding Crosses. Journal of the American Society for Horticultural Science, 2007, 132, 830-835.	1.0	31
108	Influence of spacing on the initial production of hedgerow â€~Arbequina' olive orchards. Spanish Journal of Agricultural Research, 2007, 5, 554.	0.6	35

#	Article	IF	CITATIONS
109	Seedling vigour as a preselection criterion for short juvenile period in olive breeding. Australian Journal of Agricultural Research, 2006, 57, 477.	1.5	48
110	Development, characterization and inheritance of new microsatellites in olive (Olea europaea L.) and evaluation of their usefulness in cultivar identification and genetic relationship studies. Tree Genetics and Genomes, 2006, 2, 165-175.	1.6	63
111	Selection for fruit removal force and related characteristics in olive breeding progenies. Australian Journal of Experimental Agriculture, 2005, 45, 1643.	1.0	10
112	The Length of the Juvenile Period in Olive as Influenced by Vigor of the Seedlings and the Precocity of the Parents. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 1213-1215.	1.0	70
113	Using Microsatellites for Paternity Testing in Olive Progenies. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 351-354.	1.0	51
114	A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theoretical and Applied Genetics, 2003, 106, 1273-1282.	3.6	133
115	Isolation and characterization of polymorphic microsatellites in olive (Olea europaea L.) and their transferability to other genera in the Oleaceae. Molecular Ecology Notes, 2002, 2, 265-267.	1.7	224
116	First evidence of a retrotransposon-like element in olive (Olea europaea): implications in plant variety identification by SCAR-marker development. Theoretical and Applied Genetics, 2001, 102, 1082-1087.	3.6	30
117	Development of SCAR markers in olive (Olea europaea) by direct sequencing of RAPD products: applications in olive germplasm evaluation and mapping. Theoretical and Applied Genetics, 2001, 103, 788-791.	3.6	48
118	Polymorphism and Discrimination Capacity of Randomly Amplified Polymorphic Markers in an Olive Germplasm Bank. Journal of the American Society for Horticultural Science, 2001, 126, 64-71.	1.0	130
119	Olive Floral Bud Growth and Starch Content During Winter Rest and Spring Budbreak. Hortscience: A Publication of the American Society for Hortcultural Science, 2000, 35, 1223-1227.	1.0	37
120	Role of partial resistance to Puccinia hordei in barley in the defence of barley to inappropriate rust fungi. Physiological and Molecular Plant Pathology, 1994, 45, 219-228.	2.5	12