Shannon Glaser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2753791/publications.pdf

Version: 2024-02-01

201674 214800 2,751 89 27 47 h-index citations g-index papers 91 91 91 3283 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ductular Reaction in Liver Diseases: Pathological Mechanisms and Translational Significances. Hepatology, 2019, 69, 420-430.	7.3	251
2	Expression of STING Is Increased in Liver Tissues From Patients With NAFLD and Promotes Macrophage-Mediated Hepatic Inflammation and Fibrosis in Mice. Gastroenterology, 2018, 155, 1971-1984.e4.	1.3	234
3	Exosomes in liver pathology. Journal of Hepatology, 2016, 65, 213-221.	3.7	145
4	Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by educating associated macrophages. Journal of Hepatology, 2017, 66, 102-115.	3.7	130
5	Secretin Stimulates Biliary Cell Proliferation by Regulating Expression of MicroRNA 125b and MicroRNA let7a in Mice. Gastroenterology, 2014, 146, 1795-1808.e12.	1.3	83
6	Kupffer Cells. American Journal of Pathology, 2020, 190, 2185-2193.	3.8	80
7	Knockout of secretin receptor reduces large cholangiocyte hyperplasia in mice with extrahepatic cholestasis induced by bile duct ligation. Hepatology, 2010, 52, 204-214.	7.3	79
8	Pathogenesis of Kupffer Cells in Cholestatic Liver Injury. American Journal of Pathology, 2016, 186, 2238-2247.	3.8	74
9	miR-34a-dependent overexpression of Per1 decreases cholangiocarcinoma growth. Journal of Hepatology, 2016, 64, 1295-1304.	3.7	70
10	Indole Alleviates Dietâ€Induced Hepatic Steatosis and Inflammation in a Manner Involving Myeloid Cell 6â€Phosphofructoâ€2â€Kinase/Fructoseâ€2,6â€Biphosphatase 3. Hepatology, 2020, 72, 1191-1203.	7.3	67
11	Melatonin and circadian rhythms in liver diseases: Functional roles and potential therapies. Journal of Pineal Research, 2020, 68, e12639.	7.4	63
12	Dysregulation of Iron Metabolism in Cholangiocarcinoma Stem-like Cells. Scientific Reports, 2017, 7, 17667.	3.3	60
13	Regulation of Cellular Senescence by miR-34a in Alcoholic Liver Injury. American Journal of Pathology, 2017, 187, 2788-2798.	3.8	60
14	Mechanisms of cholangiocyte responses to injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1262-1269.	3.8	58
15	Adrenergic receptor agonists prevent bile duct injury induced by adrenergic denervation by increased cAMP levels and activation of Akt. American Journal of Physiology - Renal Physiology, 2006, 290, G813-G826.	3.4	55
16	Intercellular Communication between Hepatic Cells in Liver Diseases. International Journal of Molecular Sciences, 2019, 20, 2180.	4.1	48
17	Functional Role of Cellular Senescence in Biliary Injury. American Journal of Pathology, 2015, 185, 602-609.	3.8	46
18	Prolonged darkness reduces liver fibrosis in a mouse model of primary sclerosing cholangitis by miRâ€200b downâ€regulation. FASEB Journal, 2017, 31, 4305-4324.	0.5	45

#	Article	IF	Citations
19	The Hippo signaling functions through the Notch signaling to regulate intrahepatic bile duct development in mammals. Laboratory Investigation, 2017, 97, 843-853.	3.7	43
20	Inhibition of the apelin/apelin receptor axis decreases cholangiocarcinoma growth. Cancer Letters, 2017, 386, 179-188.	7.2	41
21	Knockout of secretin receptor reduces biliary damage and liver fibrosis in Mdr2â^'/â^' mice by diminishing senescence of cholangiocytes. Laboratory Investigation, 2018, 98, 1449-1464.	3.7	41
22	Role of Cholangiocytes in Primary Biliary Cirrhosis. Seminars in Liver Disease, 2014, 34, 273-284.	3.6	37
23	Organoids and Spheroids as Models for Studying Cholestatic Liver Injury and Cholangiocarcinoma. Hepatology, 2021, 74, 491-502.	7.3	35
24	Mast Cells Regulate Ductular Reaction and Intestinal Inflammation in Cholestasis Through Farnesoid X Receptor Signaling. Hepatology, 2021, 74, 2684-2698.	7.3	35
25	Secretin/secretin receptor signaling mediates biliary damage and liver fibrosis in earlyâ€stage primary biliary cholangitis. FASEB Journal, 2019, 33, 10269-10279.	0.5	32
26	Prolonged exposure of cholestatic rats to complete dark inhibits biliary hyperplasia and liver fibrosis. American Journal of Physiology - Renal Physiology, 2014, 307, G894-G904.	3.4	31
27	The Secretin/Secretin Receptor Axis Modulates Ductular Reaction and Liver Fibrosis through Changes in Transforming Growth Factor-β1–Mediated Biliary Senescence. American Journal of Pathology, 2018, 188, 2264-2280.	3.8	31
28	The emerging role of cellular senescence in renal diseases. Journal of Cellular and Molecular Medicine, 2020, 24, 2087-2097.	3.6	31
29	Lin28 and let-7: roles and regulation in liver diseases. American Journal of Physiology - Renal Physiology, 2016, 310, G757-G765.	3.4	29
30	miR-24 Inhibition Increases Menin Expression and Decreases Cholangiocarcinoma Proliferation. American Journal of Pathology, 2017, 187, 570-580.	3.8	29
31	Knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes in the Mdr2â^'/â^' mouse model of primary sclerosing cholangitis (PSC). EBioMedicine, 2019, 48, 130-142.	6.1	29
32	Gastrin reverses established cholangiocyte proliferation and enhanced secretin-stimulated ductal secretion of BDL rats by activation of apoptosis through increased expression of Ca2+ -dependent PKC isoforms. Liver International, 2003, 23, 78-88.	3.9	27
33	Cholangiocarcinoma: novel therapeutic targets. Expert Opinion on Therapeutic Targets, 2020, 24, 345-357.	3.4	25
34	Mast Cells Promote Nonalcoholic Fatty Liver Disease Phenotypes and Microvesicular Steatosis in Mice Fed a Western Diet. Hepatology, 2021, 74, 164-182.	7.3	25
35	The Apelin–Apelin Receptor Axis Triggers Cholangiocyte Proliferation and Liver Fibrosis During Mouse Models of Cholestasis. Hepatology, 2021, 73, 2411-2428.	7.3	24
36	Activation of the renin-angiotensin system stimulates biliary hyperplasia during cholestasis induced by extrahepatic bile duct ligation. American Journal of Physiology - Renal Physiology, 2015, 308, G691-G701.	3.4	23

#	Article	IF	CITATIONS
37	Proâ€inflammatory signalling and gutâ€liver axis in nonâ€alcoholic and alcoholic steatohepatitis: Differences and similarities along the path. Journal of Cellular and Molecular Medicine, 2020, 24, 5955-5965.	3 . 6	22
38	Dual Role of Bile Acids on the Biliary Epithelium: Friend or Foe?. International Journal of Molecular Sciences, 2019, 20, 1869.	4.1	21
39	Hepatitis C Virus Infection and Cholangiocarcinoma. American Journal of Pathology, 2019, 189, 1122-1132.	3.8	21
40	Regulation of adipose tissue inflammation by adenosine 2A receptor in obese mice. Journal of Endocrinology, 2018, 239, 365-376.	2.6	21
41	Downregulation of p16 Decreases Biliary Damage and Liver Fibrosis in the Mdr2 [/] Mouse Model of Primary Sclerosing Cholangitis. Gene Expression, 2020, 20, 89-103.	1.2	20
42	Biliary epithelium: A neuroendocrine compartment in cholestatic liver disease. Clinics and Research in Hepatology and Gastroenterology, 2018, 42, 296-305.	1.5	18
43	Preclinical insights into cholangiopathies: disease modeling and emerging therapeutic targets. Expert Opinion on Therapeutic Targets, 2019, 23, 461-472.	3.4	18
44	Pinealectomy or light exposure exacerbates biliary damage and liver fibrosis in cholestatic rats through decreased melatonin synthesis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1525-1539.	3.8	18
45	Functional Role of the Secretin/Secretin Receptor Signaling During Cholestatic Liver Injury. Hepatology, 2020, 72, 2219-2227.	7.3	18
46	Biliary damage and liver fibrosis are ameliorated in a novel mouse model lacking l-histidine decarboxylase/histamine signaling. Laboratory Investigation, 2020, 100, 837-848.	3.7	18
47	Antitumor Activity of a Novel Fibroblast Growth Factor Receptor Inhibitor for Intrahepatic Cholangiocarcinoma. American Journal of Pathology, 2019, 189, 2090-2101.	3.8	17
48	The Functional Roles of Immune Cells in Primary Liver Cancer. American Journal of Pathology, 2022, 192, 826-836.	3.8	17
49	Inhibition of Secretin/Secretin Receptor Axis Ameliorates NAFLD Phenotypes. Hepatology, 2021, 74, 1845-1863.	7.3	16
50	Inhibition of microRNA-24 increases liver fibrosis by enhanced menin expression in Mdr2 \hat{a} mice. Journal of Surgical Research, 2017, 217, 160-169.	1.6	15
51	Methionine- and Choline-Deficient Diet–Induced Nonalcoholic Steatohepatitis Is Associated with Increased Intestinal Inflammation. American Journal of Pathology, 2021, 191, 1743-1753.	3.8	15
52	Biliary Epithelial Senescence in Liver Disease: There Will Be SASP. Frontiers in Molecular Biosciences, 2021, 8, 803098.	3.5	15
53	Knockdown of Hepatic Gonadotropin-Releasing Hormone by Vivo-Morpholino Decreases Liver Fibrosis in Multidrug Resistance Gene 2 Knockout Mice by Down-Regulation of miR-200b. American Journal of Pathology, 2017, 187, 1551-1565.	3.8	14
54	Knockout of \hat{l}_{\pm} -calcitonin gene-related peptide attenuates cholestatic liver injury by differentially regulating cellular senescence of hepatic stellate cells and cholangiocytes. Laboratory Investigation, 2019, 99, 764-776.	3.7	14

#	Article	IF	CITATIONS
55	Adipose tissue inflammation and systemic insulin resistance in mice with diet-induced obesity is possibly associated with disruption of PFKFB3 in hematopoietic cells. Laboratory Investigation, 2021, 101, 328-340.	3.7	14
56	Role of Non-Coding RNAs in the Progression of Liver Cancer: Evidence from Experimental Models. Cancers, 2019, 11, 1652.	3.7	13
57	Amelioration of Large Bile Duct Damage by Histamine-2 Receptor Vivo-Morpholino Treatment. American Journal of Pathology, 2020, 190, 1018-1029.	3.8	13
58	Prolonged administration of secretin to normal rats increases biliary proliferation and secretin-induced ductal secretory activity. Hepatobiliary Surgery and Nutrition, 2014, 3, 118-25.	1.5	13
59	Possible application of melatonin treatment in human diseases of the biliary tract. American Journal of Physiology - Renal Physiology, 2019, 317, G651-G660.	3.4	11
60	Development and functional characterization of extrahepatic cholangiocyte lines from normal rats. Digestive and Liver Disease, 2015, 47, 964-972.	0.9	10
61	Cholangiocarcinoma: bridging the translational gap from preclinical to clinical development and implications for future therapy. Expert Opinion on Investigational Drugs, 2021, 30, 365-375.	4.1	10
62	Knockout of the Tachykinin Receptor 1 in the Mdr2â^'/â^' (Abcb4â^'/â^') Mouse Model of Primary Sclerosing Cholangitis Reduces Biliary Damage and Liver Fibrosis. American Journal of Pathology, 2020, 190, 2251-2266.	3.8	9
63	Melatonin receptor 1A, but not 1B, knockout decreases biliary damage and liver fibrosis during cholestatic liver injury. Hepatology, 2022, 75, 797-813.	7.3	9
64	Functional role of microvesicles in gastrointestinal malignancies. Annals of Translational Medicine, 2013, 1, 4.	1.7	9
65	<i>Probiotic Bifidobacterium species: potential beneficial effects in diarrheal disorders ⟨i⟩. Focus on "Probiotic ⟨i⟩Bifidobacterium ⟨i⟩ species stimulate human SLC26A3 gene function and expression in intestinal epithelial cellsâ€. American Journal of Physiology - Cell Physiology, 2014, 307, C1081-C1083.</i>	4.6	8
66	Concise Review: Functional Roles and Therapeutic Potentials of Long Non-coding RNAs in Cholangiopathies. Frontiers in Medicine, 2020, 7, 48.	2.6	8
67	Cyclic AMP Signaling in Biliary Proliferation: A Possible Target for Cholangiocarcinoma Treatment?. Cells, 2021, 10, 1692.	4.1	8
68	Melatonin regulation of biliary functions. Hepatobiliary Surgery and Nutrition, 2014, 3, 35-43.	1.5	8
69	Indole supplementation ameliorates MCD-induced NASH in mice. Journal of Nutritional Biochemistry, 2022, 107, 109041.	4.2	8
70	Neuroendocrine Changes in Cholangiocarcinoma Growth. Cells, 2020, 9, 436.	4.1	7
71	Ischemia reperfusion of the hepatic artery induces the functional damage of large bile ducts by changes in the expression of angiogenic factors. American Journal of Physiology - Renal Physiology, 2015, 309, G865-G873.	3.4	6
72	\hat{l}_{\pm} 7-nAChR Knockout Mice Decreases Biliary Hyperplasia and Liver Fibrosis in Cholestatic Bile Duct-Ligated Mice. Gene Expression, 2018, 18, 197-207.	1.2	6

#	Article	IF	Citations
7 3	The Effects of Taurocholic Acid on Biliary Damage and Liver Fibrosis Are Mediated by Calcitonin-Gene-Related Peptide Signaling. Cells, 2022, 11, 1591.	4.1	6
74	Development and Characterization of Human Primary Cholangiocarcinoma Cell Lines. American Journal of Pathology, 2022, 192, 1200-1217.	3.8	6
75	Adoptive transfer of Pfkfb3-disrupted hematopoietic cells to wild-type mice exacerbates diet-induced hepatic steatosis and inflammation. Liver Research, 2020, 4, 136-144.	1.4	5
76	Current Advances in Basic and Translational Research of Cholangiocarcinoma. Cancers, 2021, 13, 3307.	3.7	5
77	Inhibition of the liver expression of arylalkylamine N-acetyltransferase increases the expression of angiogenic factors in cholangiocytes. Hepatobiliary Surgery and Nutrition, 2014, 3, 4-10.	1.5	5
78	Circadian Rhythm and Melatonin in Liver Carcinogenesis: Updates on Current Findings. Critical Reviews in Oncogenesis, 2021, 26, 69-85.	0.4	5
79	The Role of Lymphatics in Cholestasis: A Comprehensive Review. Seminars in Liver Disease, 2020, 40, 403-410.	3.6	4
80	Adipocyte inducible 6-phosphofructo-2-kinase suppresses adipose tissue inflammation and promotes macrophage anti-inflammatory activation. Journal of Nutritional Biochemistry, 2021, 95, 108764.	4.2	3
81	Recent advances in understanding bile duct remodeling and fibrosis. F1000Research, 2018, 7, 1165.	1.6	3
82	Identification of miR-203a, mir-10a, and miR-194 as predictors for risk of lymphovascular invasion in head and neck cancers. Oncotarget, 2021, 12, 1499-1519.	1.8	2
83	FGF1 Signaling Modulates Biliary Injury and Liver Fibrosis in the Mdr2â^'/â^' Mouse Model of Primary Sclerosing Cholangitis. Hepatology Communications, 2022, 6, 1574-1588.	4.3	2
84	Serotonin Induces Inflammatory Cytokine Production and Regulates Lymphatic Endothelial Cell Function. FASEB Journal, 2021, 35, .	0.5	0
85	Chronic exposure to nicotine induces biliary growth and fibrosis. FASEB Journal, 2011, 25, 1117.2.	0.5	0
86	Functional Role of MicroRNAâ€200 Family in Human Gall Bladder Cancer Stem Cells. FASEB Journal, 2015, 29, 45.7.	0.5	0
87	Functional Role of microRNAs in Patientâ€Derived Xenograft Models of Human Cholangiocarcinoma. FASEB Journal, 2019, 33, 869.21.	0.5	0
88	Suppression of MT1 and Melatonin Treatment Improves Liver Phenotypes in Mdr2 ^{â€∤â€} mice. FASEB Journal, 2022, 36, .	0.5	0
89	Mast Cells Contribute to Hepatic Neurokinin1 Receptor Signaling, Subsequent Biliary Damage and Peribiliary Fibrosis Via TGFâ€i²1 Signaling in MDR2â€i―Mouse Model of Primary Scelrosing Cholangitis. FASEB Journal, 2022, 36, .	0.5	O