Daniel Rubin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/27537/publications.pdf

Version: 2024-02-01

258 papers

12,906 citations

28242 55 h-index 101 g-index

264 all docs 264 docs citations

264 times ranked 15930 citing authors

#	Article	IF	CITATIONS
1	A weakly supervised model for the automated detection of adverse events using clinical notes. Journal of Biomedical Informatics, 2022, 126, 103969.	2.5	8
2	Balancing the Scales: An Analysis of Social Determinants of Health, Radiology Report Acuity, and Radiology Staffing Models in an Academic Health System. Journal of the American College of Radiology, 2022, 19, 172-177.	0.9	0
3	Automatic Localization and Brand Detection of Cervical Spine Hardware on Radiographs Using Weakly Supervised Machine Learning. Radiology: Artificial Intelligence, 2022, 4, e210099.	3.0	3
4	An expandable informatics framework for enhancing central cancer registries with digital pathology specimens, computational imaging tools, and advanced mining capabilities. Journal of Pathology Informatics, 2022, 13, 100167.	0.8	1
5	Optimizing risk-based breast cancer screening policies with reinforcement learning. Nature Medicine, 2022, 28, 136-143.	15.2	34
6	Overview of Noninterpretive Artificial Intelligence Models for Safety, Quality, Workflow, and Education Applications in Radiology Practice. Radiology: Artificial Intelligence, 2022, 4, e210114.	3.0	17
7	Margin-aware intraclass novelty identification for medical images. Journal of Medical Imaging, 2022, 9, 014004.	0.8	3
8	Automated Identification and Measurement Extraction of Pancreatic Cystic Lesions from Free-Text Radiology Reports Using Natural Language Processing. Radiology: Artificial Intelligence, 2022, 4, e210092.	3.0	7
9	Automating Scoliosis Measurements in Radiographic Studies with Machine Learning: Comparing Artificial Intelligence and Clinical Reports. Journal of Digital Imaging, 2022, 35, 524-533.	1.6	7
10	Uncovering interpretable potential confounders in electronic medical records. Nature Communications, 2022, 13, 1014.	5.8	14
11	Federated Learning for Multicenter Collaboration in Ophthalmology. Ophthalmology Retina, 2022, 6, 657-663.	1.2	20
12	Federated Learning for Multicenter Collaboration in Ophthalmology. Ophthalmology Retina, 2022, 6, 650-656.	1.2	15
13	Automated Identification of Immunocompromised Status in Critically III Children. Methods of Information in Medicine, 2022, 0, .	0.7	0
14	Handling data heterogeneity with generative replay in collaborative learning for medical imaging. Medical Image Analysis, 2022, 78, 102424.	7.0	8
15	Automatic Classification of Cancer Pathology Reports: A Systematic Review. Journal of Pathology Informatics, 2022, 13, 100003.	0.8	11
16	Natural Language Processing for Cardiovascular Applications. Contemporary Medical Imaging, 2022, , 231-243.	0.3	1
17	Toward Reduction in False-Positive Thyroid Nodule Biopsies with a Deep Learning–based Risk Stratification System Using US Cine-Clip Images. Radiology: Artificial Intelligence, 2022, 4, .	3.0	4
18	SplitAVG: A Heterogeneity-Aware Federated Deep Learning Method for Medical Imaging. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 4635-4644.	3.9	24

#	Article	IF	Citations
19	Accuracy of Electronic Medical Record Follow-Up Data for Estimating the Survival Time of Patients With Cancer. JCO Clinical Cancer Informatics, 2022, , .	1.0	3
20	Regulatory Frameworks for Development and Evaluation of Artificial Intelligence–Based Diagnostic Imaging Algorithms: Summary and Recommendations. Journal of the American College of Radiology, 2021, 18, 413-424.	0.9	69
21	An integrated time adaptive geographic atrophy prediction model for SD-OCT images. Medical Image Analysis, 2021, 68, 101893.	7.0	12
22	Comparison of segmentation-free and segmentation-dependent computer-aided diagnosis of breast masses on a public mammography dataset. Journal of Biomedical Informatics, 2021, 113, 103656.	2.5	10
23	Changes in Cancer Management due to COVID-19 Illness in Patients with Cancer in Northern California. JCO Oncology Practice, 2021, 17, e377-e385.	1.4	14
24	Privacy-preserving collaborative deep learning methods for multiinstitutional training without sharing patient data., 2021 , $101-112$.		0
25	Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study. Lancet Oncology, The, 2021, 22, 132-141.	5.1	198
26	Observational Supervision for Medical Image Classification Using Gaze Data. Lecture Notes in Computer Science, 2021, , 603-614.	1.0	7
27	Deep learning predicts postsurgical recurrence of hepatocellular carcinoma from digital histopathologic images. Scientific Reports, 2021, 11, 2047.	1.6	33
28	Biomedical Imaging Informatics. , 2021, , 299-362.		3
29	Handling missing MRI sequences in deep learning segmentation of brain metastases: a multicenter study. Npj Digital Medicine, 2021, 4, 33.	5.7	31
30	Artificial intelligence enables whole-body positron emission tomography scans with minimal radiation exposure. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2771-2781.	3.3	45
31	Type 1 Diabetes Management With Technology: Patterns of Utilization and Effects on Glucose Control Using Real-World Evidence. Clinical Diabetes, 2021, 39, 284-292.	1.2	3
32	Al-based structure-function correlation in age-related macular degeneration. Eye, 2021, 35, 2110-2118.	1.1	8
33	Natural Language Processing to Identify Cancer Treatments With Electronic Medical Records. JCO Clinical Cancer Informatics, 2021, 5, 379-393.	1.0	21
34	Data valuation for medical imaging using Shapley value and application to a large-scale chest X-ray dataset. Scientific Reports, 2021, 11, 8366.	1.6	31
35	Development and Use of Natural Language Processing for Identification of Distant Cancer Recurrence and Sites of Distant Recurrence Using Unstructured Electronic Health Record Data. JCO Clinical Cancer Informatics, 2021, 5, 469-478.	1.0	14
36	Recurrent Neural Network Circuit for Automated Detection of Atrial Fibrillation from Raw ECG. , 2021, , .		3

#	Article	IF	Citations
37	Patterns in cancer management changes for patients with COVID-19 in northern California Journal of Clinical Oncology, 2021, 39, 1535-1535.	0.8	o
38	A natural language processing tool for automatic identification of new disease and disease progression: Parsing text in multi-institutional radiology reports to facilitate clinical trial eligibility screening Journal of Clinical Oncology, 2021, 39, 1555-1555.	0.8	0
39	Weakly supervised temporal model for prediction of breast cancer distant recurrence. Scientific Reports, 2021, 11, 9461.	1.6	11
40	Patient-specific COVID-19 resource utilization prediction using fusion AI model. Npj Digital Medicine, 2021, 4, 94.	5.7	19
41	Reply to R. Kebudi et al. JCO Oncology Practice, 2021, 17, 364-364.	1.4	0
42	Impact of Upstream Medical Image Processing on Downstream Performance of a Head CT Triage Neural Network. Radiology: Artificial Intelligence, 2021, 3, e200229.	3.0	6
43	Multiplexed imaging analysis of the tumor-immune microenvironment reveals predictors of outcome in triple-negative breast cancer. Communications Biology, 2021, 4, 852.	2.0	25
44	Integrating Al Algorithms into the Clinical Workflow. Radiology: Artificial Intelligence, 2021, 3, e210013.	3.0	20
45	Imaging and artificial intelligence for progression of age-related macular degeneration. Experimental Biology and Medicine, 2021, 246, 2159-2169.	1.1	20
46	SCUâ€Net: A deep learning method for segmentation and quantification of breast arterial calcifications on mammograms. Medical Physics, 2021, 48, 5851-5861.	1.6	12
47	Challenges and opportunities for artificial intelligence in oncological imaging. Clinical Radiology, 2021, 76, 728-736.	0.5	20
48	Query bot for retrieving patients' clinical history: A COVID-19 use-case. Journal of Biomedical Informatics, 2021, 123, 103918.	2.5	1
49	Reply to Ritzwoller et al. JCO Clinical Cancer Informatics, 2021, 5, 1026-1027.	1.0	O
50	Data Sharing of Imaging in an Evolving Health Care World: Report of the ACR Data Sharing Workgroup, Part 2: Annotation, Curation, and Contracting. Journal of the American College of Radiology, 2021, 18, 1655-1665.	0.9	3
51	Data Sharing of Imaging in an Evolving Health Care World: Report of the ACR Data Sharing Workgroup, Part 1: Data Ethics of Privacy, Consent, and Anonymization. Journal of the American College of Radiology, 2021, 18, 1646-1654.	0.9	10
52	Artificial Intelligence in Radiology: Opportunities and Challenges. Radiologic Clinics of North America, 2021, 59, xv-xvi.	0.9	0
53	Natural language processing of head CT reports to identify intracranial mass effect: CTIME algorithm. American Journal of Emergency Medicine, 2021, 51, 388-392.	0.7	5
54	Advancing COVID-19 diagnosis with privacy-preserving collaboration in artificial intelligence. Nature Machine Intelligence, 2021, 3, 1081-1089.	8.3	30

#	Article	IF	Citations
55	Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI. Journal of Magnetic Resonance Imaging, 2020, 51, 175-182.	1.9	153
56	Advancing Semantic Interoperability of Image Annotations: Automated Conversion of Non-standard Image Annotations in a Commercial PACS to the Annotation and Image Markup. Journal of Digital Imaging, 2020, 33, 49-53.	1.6	5
57	Automatic Staging of Cancer Tumors Using AIM Image Annotations and Ontologies. Journal of Digital Imaging, 2020, 33, 287-303.	1.6	2
58	Lower Extremity Venous Stent Placement: A Large Retrospective Single-Center Analysis. Journal of Vascular and Interventional Radiology, 2020, 31, 251-259.e2.	0.2	15
59	A New Multimodel Machine Learning Framework to Improve Hepatic Fibrosis Grading Using Ultrasound Elastography Systems from Different Vendors. Ultrasound in Medicine and Biology, 2020, 46, 26-33.	0.7	10
60	Toward Data-Driven Learning Healthcare Systems in Interventional Radiology: Implementation to Evaluate Venous Stent Patency. Journal of Digital Imaging, 2020, 33, 25-36.	1.6	2
61	Automated Quantitative Imaging Measurements of Disease Severity in Patients with Nonthrombotic Iliac Vein Compression. Journal of Vascular and Interventional Radiology, 2020, 31, 270-275.	0.2	0
62	Prediction of age-related macular degeneration disease using a sequential deep learning approach on longitudinal SD-OCT imaging biomarkers. Scientific Reports, 2020, 10, 15434.	1.6	37
63	Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. Npj Digital Medicine, 2020, 3, 136.	5.7	266
64	CT-ORG, a new dataset for multiple organ segmentation in computed tomography. Scientific Data, 2020, 7, 381.	2.4	48
65	Identification of 31 loci for mammographic density phenotypes and their associations with breast cancer risk. Nature Communications, 2020, 11, 5116.	5.8	29
66	Current Clinical Applications of Artificial Intelligence in Radiology and Their Best Supporting Evidence. Journal of the American College of Radiology, 2020, 17, 1371-1381.	0.9	37
67	Beyond the Artificial Intelligence Hype. Journal of Thoracic Imaging, 2020, 35, S3-S10.	0.8	17
68	PENetâ€"a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging. Npj Digital Medicine, 2020, 3, 61.	5.7	72
69	Alcohol and Tobacco Use in Relation to Mammographic Density in 23,456 Women. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1039-1048.	1.1	11
70	Natural Language Generation Model for Mammography Reports Simulation. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 2711-2717.	3.9	14
71	Cross-Modal Data Programming Enables Rapid Medical Machine Learning. Patterns, 2020, 1, 100019.	3.1	33
72	A Scalable Natural Language Processing for Inferring BT-RADS Categorization from Unstructured Brain Magnetic Resonance Reports. Journal of Digital Imaging, 2020, 33, 1393-1400.	1.6	13

#	Article	IF	Citations
73	Accounting for data variability in multi-institutional distributed deep learning for medical imaging. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 700-708.	2.2	36
74	MS-CAM: Multi-Scale Class Activation Maps for Weakly-Supervised Segmentation of Geographic Atrophy Lesions in SD-OCT Images. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3443-3455.	3.9	34
75	Weak supervision as an efficient approach for automated seizure detection in electroencephalography. Npj Digital Medicine, 2020, 3, 59.	5.7	33
76	Preparing Medical Imaging Data for Machine Learning. Radiology, 2020, 295, 4-15.	3.6	473
77	Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms. JAMA Network Open, 2020, 3, e200265.	2.8	236
78	Quantitative Framework for Risk Stratification of Thyroid Nodules With Ultrasound: A Step Toward Automated Triage of Thyroid Cancer. American Journal of Roentgenology, 2020, 214, 885-892.	1.0	8
79	Spatial Characterization of Tumor Perfusion Properties from 3D DCE-US Perfusion Maps are Early Predictors of Cancer Treatment Response. Scientific Reports, 2020, 10, 6996.	1.6	9
80	A Fully-Integrated Analog Machine Learning Classifier for Breast Cancer Classification. Electronics (Switzerland), 2020, 9, 515.	1.8	7
81	Federated Learning for Breast Density Classification: A Real-World Implementation. Lecture Notes in Computer Science, 2020, , 181-191.	1.0	75
82	Multimodal fusion with deep neural networks for leveraging CT imaging and electronic health record: a case-study in pulmonary embolism detection. Scientific Reports, 2020, 10, 22147.	1.6	83
83	Quantitative imaging feature pipeline: a web-based tool for utilizing, sharing, and building image-processing pipelines. Journal of Medical Imaging, 2020, 7, 1.	0.8	19
84	Detection of prostate cancer and determination of its significance using explainable artificial intelligence Journal of Clinical Oncology, 2020, 38, 5555-5555.	0.8	3
85	Determination of biologic and prognostic feature scores from whole slide histology images using deep learning Journal of Clinical Oncology, 2020, 38, e17527-e17527.	0.8	1
86	Clinical Trial Design and Development Work Group Within the Quantitative Imaging Network. Tomography, 2020, 6, 60-64.	0.8	2
87	Development and Performance of the Pulmonary Embolism Result Forecast Model (PERFORM) for Computed Tomography Clinical Decision Support. JAMA Network Open, 2019, 2, e198719.	2.8	50
88	A Multi-Scale Deep Convolutional Neural Network For Joint Segmentation And Prediction Of Geographic Atrophy In SD-OCT Images. , 2019, , .		2
89	Is it possible to automatically assess pretreatment digital rectal examination documentation using natural language processing? A single-centre retrospective study. BMJ Open, 2019, 9, e027182.	0.8	6
90	Artificial Intelligence in Imaging: The Radiologist's Role. Journal of the American College of Radiology, 2019, 16, 1309-1317.	0.9	60

#	Article	IF	Citations
91	Automated Detection of Measurements and Their Descriptors in Radiology Reports Using a Hybrid Natural Language Processing Algorithm. Journal of Digital Imaging, 2019, 32, 544-553.	1.6	30
92	Point Shear Wave Elastography Using Machine Learning to Differentiate Renal Cell Carcinoma and Angiomyolipoma. Ultrasound in Medicine and Biology, 2019, 45, 1944-1954.	0.7	10
93	Weakly supervised natural language processing for assessing patient-centered outcome following prostate cancer treatment. JAMIA Open, 2019, 2, 150-159.	1.0	35
94	Imaging, Genetic, and Demographic Factors Associated With Conversion to Neovascular Age-Related Macular Degeneration. JAMA Ophthalmology, 2019, 137, 738.	1.4	31
95	Reproductive Factors and Mammographic Density: Associations Among 24,840 Women and Comparison of Studies Using Digitized Film-Screen Mammography and Full-Field Digital Mammography. American Journal of Epidemiology, 2019, 188, 1144-1154.	1.6	14
96	Automatic inference of BI-RADS final assessment categories from narrative mammography report findings. Journal of Biomedical Informatics, 2019, 92, 103137.	2.5	14
97	Geographic atrophy segmentation in SD-OCT images using synthesized fundus autofluorescence imaging. Computer Methods and Programs in Biomedicine, 2019, 182, 105101.	2.6	15
98	Natural Language Processing Approaches to Detect the Timeline of Metastatic Recurrence of Breast Cancer. JCO Clinical Cancer Informatics, 2019, 3, 1-12.	1.0	43
99	A multiâ€model framework to estimate perfusion parameters using contrastâ€enhanced ultrasound imaging. Medical Physics, 2019, 46, 590-600.	1.6	5
100	Automated geographic atrophy segmentation for SD-OCT images based on two-stage learning model. Computers in Biology and Medicine, 2019, 105, 102-111.	3.9	26
101	Assessment of Convolutional Neural Networks for Automated Classification of Chest Radiographs. Radiology, 2019, 290, 537-544.	3.6	142
102	Comparative effectiveness of convolutional neural network (CNN) and recurrent neural network (RNN) architectures for radiology text report classification. Artificial Intelligence in Medicine, 2019, 97, 79-88.	3.8	158
103	The use of texture-based radiomics CT analysis to predict outcomes in early-stage non-small cell lung cancer treated with stereotactic ablative radiotherapy. British Journal of Radiology, 2019, 92, 20180228.	1.0	35
104	Association of Tumor [18F]FDG Activity and Diffusion Restriction with Clinical Outcomes of Rhabdomyosarcomas. Molecular Imaging and Biology, 2019, 21, 591-598.	1.3	14
105	Doubly Weak Supervision of Deep Learning Models for Head CT. Lecture Notes in Computer Science, 2019, , 811-819.	1.0	8
106	ePAD: An Image Annotation and Analysis Platform for Quantitative Imaging. Tomography, 2019, 5, 170-183.	0.8	30
107	Segmentation and Visualization of Drusen and Geographic Atrophy in SD-OCT Images. Biological and Medical Physics Series, 2019, , 281-344.	0.3	0
108	Radiomics features to identify distinct subtypes of triple-negative breast cancers Journal of Clinical Oncology, 2019, 37, 3069-3069.	0.8	0

#	Article	IF	Citations
109	Distributed deep learning networks among institutions for medical imaging. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 945-954.	2.2	227
110	Integrative Personal Omics Profiles during Periods of Weight Gain and Loss. Cell Systems, 2018, 6, 157-170.e8.	2.9	183
111	Deep Learning in Neuroradiology. American Journal of Neuroradiology, 2018, 39, 1776-1784.	1.2	222
112	Automatic information extraction from unstructured mammography reports using distributed semantics. Journal of Biomedical Informatics, 2018, 78, 78-86.	2.5	33
113	Intratumoral Spatial Heterogeneity at Perfusion MR Imaging Predicts Recurrence-free Survival in Locally Advanced Breast Cancer Treated with Neoadjuvant Chemotherapy. Radiology, 2018, 288, 26-35.	3.6	102
114	Expanding a radiology lexicon using contextual patterns in radiology reports. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 679-685.	2.2	20
115	Proposing New RadLex Terms by Analyzing Free-Text Mammography Reports. Journal of Digital Imaging, 2018, 31, 596-603.	1.6	9
116	Transfer learning on fused multiparametric MR images for classifying histopathological subtypes of rhabdomyosarcoma. Computerized Medical Imaging and Graphics, 2018, 65, 167-175.	3.5	62
117	Non–Small Cell Lung Cancer Radiogenomics Map Identifies Relationships between Molecular and Imaging Phenotypes with Prognostic Implications. Radiology, 2018, 286, 307-315.	3.6	140
118	Quantitative Image Feature Engine (QIFE): an Open-Source, Modular Engine for 3D Quantitative Feature Extraction from Volumetric Medical Images. Journal of Digital Imaging, 2018, 31, 403-414.	1.6	39
119	Radiology report annotation using intelligent word embeddings: Applied to multi-institutional chest CT cohort. Journal of Biomedical Informatics, 2018, 77, 11-20.	2.5	61
120	A radiogenomic dataset of non-small cell lung cancer. Scientific Data, 2018, 5, 180202.	2.4	167
121	The Use of Quantitative Imaging in Radiation Oncology: A Quantitative Imaging Network (QIN) Perspective. International Journal of Radiation Oncology Biology Physics, 2018, 102, 1219-1235.	0.4	30
122	Magnetic resonance imaging and molecular features associated with tumor-infiltrating lymphocytes in breast cancer. Breast Cancer Research, 2018, 20, 101.	2.2	44
123	Probabilistic Prognostic Estimates of Survival in Metastatic Cancer Patients (PPES-Met) Utilizing Free-Text Clinical Narratives. Scientific Reports, 2018, 8, 10037.	1.6	18
124	Relevance feedback for enhancing content based image retrieval and automatic prediction of semantic image features: Application to bone tumor radiographs. Journal of Biomedical Informatics, 2018, 84, 123-135.	2.5	29
125	Beyond Retinal Layers: A Deep Voting Model for Automated Geographic Atrophy Segmentation in SD-OCT Images. Translational Vision Science and Technology, $2018, 7, 1$.	1.1	54
126	Automated dendritic spine detection using convolutional neural networks on maximum intensity projected microscopic volumes. Journal of Neuroscience Methods, 2018, 309, 25-34.	1.3	15

#	Article	IF	CITATIONS
127	An Automated Feature Engineering for Digital Rectal Examination Documentation using Natural Language Processing. AMIA Annual Symposium proceedings, 2018, 2018, 288-294.	0.2	2
128	Magnetic resonance perfusion image features uncover an angiogenic subgroup of glioblastoma patients with poor survival and better response to antiangiogenic treatment. Neuro-Oncology, 2017, 19, now270.	0.6	32
129	Adaptive local window for level set segmentation of CT and MRI liver lesions. Medical Image Analysis, 2017, 37, 46-55.	7.0	59
130	Predictive radiogenomics modeling of EGFR mutation status in lung cancer. Scientific Reports, 2017, 7, 41674.	1.6	124
131	Dynamic strategy for personalized medicine: An application to metastatic breast cancer. Journal of Biomedical Informatics, 2017, 68, 50-57.	2.5	10
132	Computerized Prediction of Radiological Observations Based on Quantitative Feature Analysis: Initial Experience in Liver Lesions. Journal of Digital Imaging, 2017, 30, 506-518.	1.6	2
133	Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions. Journal of Digital Imaging, 2017, 30, 449-459.	1.6	758
134	Combination of visual and symbolic knowledge: A survey in anatomy. Computers in Biology and Medicine, 2017, 80, 148-157.	3.9	1
135	Automated detection of foveal center in <scp>SD</scp> â€ <scp>OCT</scp> images using the saliency of retinal thickness maps. Medical Physics, 2017, 44, 6390-6403.	1.6	9
136	Heterogeneous Enhancement Patterns of Tumor-adjacent Parenchyma at MR Imaging Are Associated with Dysregulated Signaling Pathways and Poor Survival in Breast Cancer. Radiology, 2017, 285, 401-413.	3.6	92
137	Association of Omics Features with Histopathology Patterns in Lung Adenocarcinoma. Cell Systems, 2017, 5, 620-627.e3.	2.9	88
138	Use of Radiology Procedure Codes in Health Care: The Need for Standardization and Structure. Radiographics, 2017, 37, 1099-1110.	1.4	26
139	Age at Menarche and Late Adolescent Adiposity Associated with Mammographic Density on Processed Digital Mammograms in 24,840 Women. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1450-1458.	1.1	12
140	Piecewise convexity of artificial neural networks. Neural Networks, 2017, 94, 34-45.	3.3	15
141	Volumetric Image Registration From Invariant Keypoints. IEEE Transactions on Image Processing, 2017, 26, 4900-4910.	6.0	74
142	Revealing cancer subtypes with higher-order correlations applied to imaging and omics data. BMC Medical Genomics, 2017, 10, 20.	0.7	9
143	Adaptive Estimation of Active Contour Parameters Using Convolutional Neural Networks and Texture Analysis. IEEE Transactions on Medical Imaging, 2017, 36, 781-791.	5.4	46
144	Common Data Elements in Radiology. Radiology, 2017, 283, 837-844.	3.6	74

#	Article	IF	Citations
145	Building and Querying RDF/OWL Database of Semantically Annotated Nuclear Medicine Images. Journal of Digital Imaging, 2017, 30, 4-10.	1.6	7
146	Breast Cancer Risk and Mammographic Density Assessed with Semiautomated and Fully Automated Methods and BI-RADS. Radiology, 2017, 282, 348-355.	3.6	65
147	Robust noise region-based active contour model via local similarity factor for image segmentation. Pattern Recognition, 2017, 61, 104-119.	5.1	193
148	NIMG-27. GLIOBLASTOMA TUMOR SEGMENTATION USING DEEP CONVOLUTIONAL NEURAL NETWORKS. Neuro-Oncology, 2017, 19, vi147-vi147.	0.6	0
149	A curated mammography data set for use in computer-aided detection and diagnosis research. Scientific Data, 2017, 4, 170177.	2.4	377
150	Automated intraretinal segmentation of SD-OCT images in normal and age-related macular degeneration eyes. Biomedical Optics Express, 2017, 8, 1926.	1.5	31
151	Web-Based Tools for Exploring the Potential of Quantitative Imaging Biomarkers in Radiology. , 2017, , 379-410.		3
152	Individual Drusen Segmentation and Repeatability and Reproducibility of Their Automated Quantification in Optical Coherence Tomography Images. Translational Vision Science and Technology, 2017, 6, 12.	1.1	20
153	Locally adaptive magnetic resonance intensity models for unsupervised segmentation of multiple sclerosis lesions. Journal of Medical Imaging, 2017, 5, 1.	0.8	2
154	Assessing treatment response in triple-negative breast cancer from quantitative image analysis in perfusion magnetic resonance imaging. Journal of Medical Imaging, 2017, 5, 1.	0.8	10
155	Prediction of EGFR and KRAS mutation in non-small cell lung cancer using quantitative 18F FDG-PET/CT metrics. Oncotarget, 2017, 8, 52792-52801.	0.8	32
156	Toward Automated Pre-Biopsy Thyroid Cancer Risk Estimation in Ultrasound. AMIA Annual Symposium proceedings, 2017, 2017, 734-741.	0.2	2
157	Mining Electronic Health Records to Extract Patient-Centered Outcomes Following Prostate Cancer Treatment. AMIA Annual Symposium proceedings, 2017, 2017, 876-882.	0.2	10
158	Differential Data Augmentation Techniques for Medical Imaging Classification Tasks. AMIA Annual Symposium proceedings, 2017, 2017, 979-984.	0.2	64
159	A Rapid Segmentation-Insensitive "Digital Biopsy―Method for Radiomic Feature Extraction: Method and Pilot Study Using CT Images of Non–Small Cell Lung Cancer. Tomography, 2016, 2, 283-294.	0.8	20
160	Using automatically extracted information from mammography reports for decision-support. Journal of Biomedical Informatics, 2016, 62, 224-231.	2.5	44
161	Case-control study of mammographic density and breast cancer risk using processed digital mammograms. Breast Cancer Research, 2016, 18, 53.	2.2	18
162	A method for normalizing pathology images to improve feature extraction for quantitative pathology. Medical Physics, 2016, 43, 528-537.	1.6	26

#	Article	IF	Citations
163	Robust Intratumor Partitioning to Identify High-Risk Subregions in Lung Cancer: A Pilot Study. International Journal of Radiation Oncology Biology Physics, 2016, 95, 1504-1512.	0.4	71
164	Toward rapid learning in cancer treatment selection: An analytical engine for practice-based clinical data. Journal of Biomedical Informatics, 2016, 60, 104-113.	2.5	20
165	Early-Stage Non–Small Cell Lung Cancer: Quantitative Imaging Characteristics of ¹⁸ F Fluorodeoxyglucose PET/CT Allow Prediction of Distant Metastasis. Radiology, 2016, 281, 270-278.	3.6	152
166	Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nature Communications, 2016, 7, 12474.	5.8	694
167	Fully Automated Prediction of Geographic Atrophy Growth Using Quantitative Spectral-Domain Optical Coherence Tomography Biomarkers. Ophthalmology, 2016, 123, 1737-1750.	2.5	63
168	Automated geographic atrophy segmentation for SD-OCT images using region-based C-V model via local similarity factor. Biomedical Optics Express, 2016, 7, 581.	1.5	62
169	Quantitative Imaging in Cancer Clinical Trials. Clinical Cancer Research, 2016, 22, 284-290.	3.2	106
170	Computational Identification of Tumor Anatomic Location Associated with Survival in 2 Large Cohorts of Human Primary Glioblastomas. American Journal of Neuroradiology, 2016, 37, 621-628.	1.2	27
171	Analysis of Inner and Outer Retinal Thickness in Patients Using Hydroxychloroquine Prior to Development of Retinopathy. JAMA Ophthalmology, 2016, 134, 511.	1.4	26
172	Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles. Medical Image Analysis, 2016, 30, 60-71.	7.0	168
173	A combinatorial radiographic phenotype may stratify patient survival and be associated with invasion and proliferation characteristics in glioblastoma. Journal of Neurosurgery, 2016, 124, 1008-1017.	0.9	40
174	Randomized phase II study of cisplatin and etoposide versus temozolomide and capecitabine in patients (pts) with advanced G3 non-small cell gastroenteropancreatic neuroendocrine carcinomas (GEPNEC): A trial of the ECOG-ACRIN Cancer Research Group (EA2142) Journal of Clinical Oncology, 2016, 34, TPS4149-TPS4149.	0.8	5
175	Computational Challenges and Collaborative Projects in the NCI Quantitative Imaging Network. Tomography, 2016, 2, 242-249.	0.8	15
176	Optimized steerable wavelets for texture analysis of lung tissue in 3-D CT: Classification of usual interstitial pneumonia. , 2015 , , .		16
177	Visual Prognosis of Eyes Recovering From Macular Hole Surgery Through Automated Quantitative Analysis of Spectral-Domain Optical Coherence Tomography (SD-OCT) Scans., 2015, 56, 4631.		23
178	Restricted Summed-Area Projection for Geographic Atrophy Visualization in SD-OCT Images. Translational Vision Science and Technology, 2015, 4, 2.	1.1	12
179	Localization of Damage in Progressive Hydroxychloroquine Retinopathy On and Off the Drug: Inner Versus Outer Retina, Parafovea Versus Peripheral Fovea. , 2015, 56, 3415.		82
180	Predicting adenocarcinoma recurrence using computational texture models of nodule components in lung CT. Medical Physics, 2015, 42, 2054-2063.	1.6	38

#	Article	IF	Citations
181	Automatic abstraction of imaging observations with their characteristics from mammography reports. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, e81-e92.	2.2	28
182	3D Markup of Radiological Images in ePAD, a Web-Based Image Annotation Tool., 2015,,.		6
183	Semantic Retrieval of Radiological Images withÂRelevance Feedback. Lecture Notes in Computer Science, 2015, , 11-25.	1.0	1
184	Application of Improved Homogeneity Similarity-Based Denoising in Optical Coherence Tomography Retinal Images. Journal of Digital Imaging, 2015, 28, 346-361.	1.6	14
185	Addition of MR imaging features and genetic biomarkers strengthens glioblastoma survival prediction in TCGA patients. Journal of Neuroradiology, 2015, 42, 212-221.	0.6	109
186	Comparing image search behaviour in the ARRS GoldMiner search engine and a clinical PACS/RIS. Journal of Biomedical Informatics, 2015, 56, 57-64.	2.5	7
187	Content-based image retrieval in radiology: analysis of variability in human perception of similarity. Journal of Medical Imaging, 2015, 2, 025501.	0.8	12
188	Automated Classification of Usual Interstitial Pneumonia Using Regional Volumetric Texture Analysis in High-Resolution Computed Tomography. Investigative Radiology, 2015, 50, 261-267.	3.5	78
189	Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. Science Translational Medicine, 2015, 7, 303ra138.	5.8	227
190	Automatic Classification of Cancer Tumors Using Image Annotations and Ontologies. , 2015, , .		1
191	Automated Grading of Gliomas using Deep Learning in Digital Pathology Images: A modular approach with ensemble of convolutional neural networks. AMIA Annual Symposium proceedings, 2015, 2015, 1899-908.	0.2	73
192	A Robust Classifier to Distinguish Noise from fMRI Independent Components. PLoS ONE, 2014, 9, e95493.	1.1	24
193	A semantic framework for the retrieval of similar radiological images based on medical annotations. , 2014, , .		1
194	Quantitative SD-OCT Imaging Biomarkers as Indicators of Age-Related Macular Degeneration Progression., 2014, 55, 7093.		118
195	Biomedical Imaging Informatics. , 2014, , 285-327.		10
196	A hierarchical knowledge-based approach for retrieving similar medical images described with semantic annotations. Journal of Biomedical Informatics, 2014, 49, 227-244.	2.5	33
197	Semiautomatic segmentation and follow-up of multicomponent low-grade tumors in longitudinal brain MRI studies. Medical Physics, 2014, 41, 052303.	1.6	23
198	Automated retinal layers segmentation in SD-OCT images using dual-gradient and spatial correlation smoothness constraint. Computers in Biology and Medicine, 2014, 54, 116-128.	3.9	45

#	Article	IF	Citations
199	Predicting Visual Semantic Descriptive Terms From Radiological Image Data: Preliminary Results With Liver Lesions in CT. IEEE Transactions on Medical Imaging, 2014, 33, 1669-1676.	5.4	40
200	The National Cancer Informatics Program (NCIP) Annotation and Image Markup (AIM) Foundation Model. Journal of Digital Imaging, 2014, 27, 692-701.	1.6	26
201	On combining image-based and ontological semantic dissimilarities for medical image retrieval applications. Medical Image Analysis, 2014, 18, 1082-1100.	7.0	40
202	Automated Tracking of Quantitative Assessments of Tumor Burden in Clinical Trials. Translational Oncology, 2014, 7, 23-35.	1.7	48
203	Developing a Comprehensive Database Management System for Organization and Evaluation of Mammography Datasets. Cancer Informatics, 2014, 13s3, CIN.S14031.	0.9	10
204	A phase II study of capecitabine, carboplatin, and bevacizumab for metastatic or unresectable gastroesophageal junction and gastric adenocarcinoma Journal of Clinical Oncology, 2014, 32, 115-115.	0.8	2
205	A novel method to assess incompleteness of mammography reports. AMIA Annual Symposium proceedings, 2014, 2014, 1758-67.	0.2	0
206	Automated detection of ambiguity in BI-RADS assessment categories in mammography reports. Studies in Health Technology and Informatics, 2014, 197, 35-9.	0.2	7
207	Modeling Perceptual Similarity Measures in CT Images of Focal Liver Lesions. Journal of Digital Imaging, 2013, 26, 714-720.	1.6	7
208	Imaging Informatics. Academic Radiology, 2013, 20, 1195-1212.	1.3	26
209	Quantitative Evaluation of Drusen on Photographs. Ophthalmology, 2013, 120, 644-644.e2.	2.5	5
210	Automated drusen segmentation and quantification in SD-OCT images. Medical Image Analysis, 2013, 17, 1058-1072.	7.0	106
211	Semi-automatic geographic atrophy segmentation for SD-OCT images. Biomedical Optics Express, 2013, 4, 2729.	1.5	51
212	Annotation for information extraction from mammography reports. Studies in Health Technology and Informatics, 2013, 190, 183-5.	0.2	3
213	Informatics in Radiology: An Open-Source and Open-Access Cancer Biomedical Informatics Grid Annotation and Image Markup Template Builder. Radiographics, 2012, 32, 1223-1232.	1.4	14
214	Informatics in Radiology: Improving Clinical Work Flow through an AIM Database: A Sample Web-based Lesion Tracking Application. Radiographics, 2012, 32, 1543-1552.	1.4	17
215	Automatic classification of mammography reports by BI-RADS breast tissue composition class. Journal of the American Medical Informatics Association: JAMIA, 2012, 19, 913-916.	2.2	49
216	Using the Semantic Web and Web Apps to Connect Radiologists and Oncologists. , 2012, , .		3

#	Article	IF	CITATIONS
217	Informatics methods to enable sharing of quantitative imaging research data. Magnetic Resonance Imaging, 2012, 30, 1249-1256.	1.0	17
218	A Comprehensive Descriptor of Shape: Method and Application to Content-Based Retrieval of Similar Appearing Lesions in Medical Images. Journal of Digital Imaging, 2012, 25, 121-128.	1.6	27
219	Automatic annotation of radiological observations in liver CT images. AMIA Annual Symposium proceedings, 2012, 2012, 257-63.	0.2	5
220	On the Feasibility of Predicting Radiological Observations from Computational Imaging Features of Liver Lesions in CT Scans. , $2011, \dots$		9
221	Finding the Meaning in Images: Annotation and Image Markup. Philosophy, Psychiatry and Psychology, 2011, 18, 311-318.	0.2	9
222	Evaluation of Negation and Uncertainty Detection and its Impact on Precision and Recall in Search. Journal of Digital Imaging, 2011, 24, 234-242.	1.6	14
223	Ontology-Assisted Analysis of Web Queries to Determine the Knowledge Radiologists Seek. Journal of Digital Imaging, 2011, 24, 160-164.	1.6	19
224	Content-Based Image Retrieval in Radiology: Current Status and Future Directions. Journal of Digital Imaging, 2011, 24, 208-222.	1.6	321
225	Managing Biomedical Image Metadata for Search and Retrieval of Similar Images. Journal of Digital Imaging, 2011, 24, 739-748.	1.6	29
226	Informatics in Radiology: Measuring and Improving Quality in Radiology: Meeting the Challenge with Informatics. Radiographics, 2011, 31, 1511-1527.	1.4	38
227	A Scalable Reference Standard of Visual Similarity for a Content-Based Image Retrieval System. , 2011, , .		5
228	The caBIGâ,, \$\phi\$ Annotation and Image Markup Project. Journal of Digital Imaging, 2010, 23, 217-225.	1.6	94
229	Automated Retrieval of CT Images of Liver Lesions on the Basis of Image Similarity: Method and Preliminary Results. Radiology, 2010, 256, 243-252.	3.6	92
230	Annotation and Image Markup: Accessing and Interoperating with the Semantic Content in Medical Imaging. IEEE Intelligent Systems, 2009, 24, 57-65.	4.0	32
231	BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Research, 2009, 37, W170-W173.	6.5	688
232	The Annotation and Image Mark-up Project. Radiology, 2009, 253, 590-592.	3.6	56
233	Computational neuroanatomy: ontology-based representation of neural components and connectivity. BMC Bioinformatics, 2009, 10, S3.	1.2	16
234	Informatics Methods to Enable Patient-centered Radiology. Academic Radiology, 2009, 16, 524-534.	1.3	14

#	Article	IF	Citations
235	The IR Radlex Project: An Interventional Radiology Lexicon—A Collaborative Project of the Radiological Society of North America and the Society of Interventional Radiology. Journal of Vascular and Interventional Radiology, 2009, 20, 433-435.	0.2	23
236	The ACR BI-RADS® Experience: Learning From History. Journal of the American College of Radiology, 2009, 6, 851-860.	0.9	257
237	Creating and Curating a Terminology for Radiology: Ontology Modeling and Analysis. Journal of Digital Imaging, 2008, 21, 355-362.	1.6	118
238	A Data Warehouse for Integrating Radiologic and Pathologic Data. Journal of the American College of Radiology, 2008, 5, 210-217.	0.9	47
239	iPad: Semantic annotation and markup of radiological images. AMIA Annual Symposium proceedings, 2008, , 626-30.	0.2	32
240	FMA-RadLex: An application ontology of radiological anatomy derived from the foundational model of anatomy reference ontology. AMIA Annual Symposium proceedings, 2008, , 465-9.	0.2	20
241	Biomedical ontologies: a functional perspective. Briefings in Bioinformatics, 2007, 9, 75-90.	3.2	218
242	Annotation and query of tissue microarray data using the NCI Thesaurus. BMC Bioinformatics, 2007, 8, 296.	1.2	26
243	Protégé: A Tool for Managing and Using Terminology in Radiology Applications. Journal of Digital Imaging, 2007, 20, 34-46.	1.6	71
244	An Ontology for PACS Integration. Journal of Digital Imaging, 2006, 19, 316-327.	1.6	24
245	Using ontologies linked with geometric models to reason about penetrating injuries. Artificial Intelligence in Medicine, 2006, 37, 167-176.	3.8	30
246	Bayesian Network to Predict Breast Cancer Risk of Mammographic Microcalcifications and Reduce Number of Benign Biopsy Results: Initial Experience. Radiology, 2006, 240, 666-673.	3.6	91
247	National Center for Biomedical Ontology: Advancing Biomedicine through Structured Organization of Scientific Knowledge. OMICS A Journal of Integrative Biology, 2006, 10, 185-198.	1.0	149
248	Ontology-based representation of simulation models of physiology. AMIA Annual Symposium proceedings, 2006, , 664-8.	0.2	5
249	Use of description logic classification to reason about consequences of penetrating injuries. AMIA Annual Symposium proceedings, 2005, , 649-53.	0.2	5
250	A Statistical Approach to Scanning the Biomedical Literature for Pharmacogenetics Knowledge. Journal of the American Medical Informatics Association: JAMIA, 2004, 12, 121-129.	2.2	40
251	An ?Omics? view of drug development. Drug Development Research, 2004, 62, 81-85.	1.4	8
252	Linking Ontologies with Three-Dimensional Models of Anatomy to Predict the Effects of Penetrating Injuries., 2004, 2004, 3128-31.		5

#	Article	IF	CITATION
253	Using a Bayesian network to predict the probability and type of breast cancer represented by microcalcifications on mammography. Studies in Health Technology and Informatics, 2004, 107, 13-7.	0.2	11
254	Representing genetic sequence data for pharmacogenomics: an evolutionary approach using ontological and relational models. Bioinformatics, 2002, 18, S207-S215.	1.8	14
255	Automating data acquisition into ontologies from pharmacogenetics relational data sources using declarative object definitions and XML. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2002, , 88-99.	0.7	4
256	AUTOMATING DATA ACQUISITION INTO ONTOLOGIES FROM PHARMACOGENETICS RELATIONAL DATA SOURCES USING DECLARATIVE OBJECT DEFINITIONS AND XML. , 2001, , .		20
257	Dynamics of tumor imaging with Gd-DTPA—polyethylene glycol polymers: Dependence on molecular weight. Journal of Magnetic Resonance Imaging, 1994, 4, 467-472.	1.9	90
258	Liquid oral magnetic particles as a gastrointestinal contrast agent for MR imaging: Efficacy in vivo. Journal of Magnetic Resonance Imaging, 1993, 3, 113-118.	1.9	18