Daniel Rubin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/27537/publications.pdf Version: 2024-02-01

DANIEL PURIN

#	Article	IF	CITATIONS
1	Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions. Journal of Digital Imaging, 2017, 30, 449-459.	1.6	758
2	Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nature Communications, 2016, 7, 12474.	5.8	694
3	BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Research, 2009, 37, W170-W173.	6.5	688
4	Preparing Medical Imaging Data for Machine Learning. Radiology, 2020, 295, 4-15.	3.6	473
5	A curated mammography data set for use in computer-aided detection and diagnosis research. Scientific Data, 2017, 4, 170177.	2.4	377
6	Content-Based Image Retrieval in Radiology: Current Status and Future Directions. Journal of Digital Imaging, 2011, 24, 208-222.	1.6	321
7	Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. Npj Digital Medicine, 2020, 3, 136.	5.7	266
8	The ACR BI-RADS® Experience: Learning From History. Journal of the American College of Radiology, 2009, 6, 851-860.	0.9	257
9	Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms. JAMA Network Open, 2020, 3, e200265.	2.8	236
10	Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. Science Translational Medicine, 2015, 7, 303ra138.	5.8	227
11	Distributed deep learning networks among institutions for medical imaging. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 945-954.	2.2	227
12	Deep Learning in Neuroradiology. American Journal of Neuroradiology, 2018, 39, 1776-1784.	1.2	222
13	Biomedical ontologies: a functional perspective. Briefings in Bioinformatics, 2007, 9, 75-90.	3.2	218
14	Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study. Lancet Oncology, The, 2021, 22, 132-141.	5.1	198
15	Robust noise region-based active contour model via local similarity factor for image segmentation. Pattern Recognition, 2017, 61, 104-119.	5.1	193
16	Integrative Personal Omics Profiles during Periods of Weight Gain and Loss. Cell Systems, 2018, 6, 157-170.e8.	2.9	183
17	Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles. Medical Image Analysis, 2016, 30, 60-71.	7.0	168
18	A radiogenomic dataset of non-small cell lung cancer. Scientific Data, 2018, 5, 180202.	2.4	167

#	Article	IF	CITATIONS
19	Comparative effectiveness of convolutional neural network (CNN) and recurrent neural network (RNN) architectures for radiology text report classification. Artificial Intelligence in Medicine, 2019, 97, 79-88.	3.8	158
20	Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI. Journal of Magnetic Resonance Imaging, 2020, 51, 175-182.	1.9	153
21	Early-Stage Non–Small Cell Lung Cancer: Quantitative Imaging Characteristics of ¹⁸ F Fluorodeoxyglucose PET/CT Allow Prediction of Distant Metastasis. Radiology, 2016, 281, 270-278.	3.6	152
22	National Center for Biomedical Ontology: Advancing Biomedicine through Structured Organization of Scientific Knowledge. OMICS A Journal of Integrative Biology, 2006, 10, 185-198.	1.0	149
23	Assessment of Convolutional Neural Networks for Automated Classification of Chest Radiographs. Radiology, 2019, 290, 537-544.	3.6	142
24	Non–Small Cell Lung Cancer Radiogenomics Map Identifies Relationships between Molecular and Imaging Phenotypes with Prognostic Implications. Radiology, 2018, 286, 307-315.	3.6	140
25	Predictive radiogenomics modeling of EGFR mutation status in lung cancer. Scientific Reports, 2017, 7, 41674.	1.6	124
26	Creating and Curating a Terminology for Radiology: Ontology Modeling and Analysis. Journal of Digital Imaging, 2008, 21, 355-362.	1.6	118
27	Quantitative SD-OCT Imaging Biomarkers as Indicators of Age-Related Macular Degeneration Progression. , 2014, 55, 7093.		118
28	Addition of MR imaging features and genetic biomarkers strengthens glioblastoma survival prediction in TCGA patients. Journal of Neuroradiology, 2015, 42, 212-221.	0.6	109
29	Automated drusen segmentation and quantification in SD-OCT images. Medical Image Analysis, 2013, 17, 1058-1072.	7.0	106
30	Quantitative Imaging in Cancer Clinical Trials. Clinical Cancer Research, 2016, 22, 284-290.	3.2	106
31	Intratumoral Spatial Heterogeneity at Perfusion MR Imaging Predicts Recurrence-free Survival in Locally Advanced Breast Cancer Treated with Neoadjuvant Chemotherapy. Radiology, 2018, 288, 26-35.	3.6	102
32	The caBIGâ,,¢ Annotation and Image Markup Project. Journal of Digital Imaging, 2010, 23, 217-225.	1.6	94
33	Automated Retrieval of CT Images of Liver Lesions on the Basis of Image Similarity: Method and Preliminary Results. Radiology, 2010, 256, 243-252.	3.6	92
34	Heterogeneous Enhancement Patterns of Tumor-adjacent Parenchyma at MR Imaging Are Associated with Dysregulated Signaling Pathways and Poor Survival in Breast Cancer. Radiology, 2017, 285, 401-413.	3.6	92
35	Bayesian Network to Predict Breast Cancer Risk of Mammographic Microcalcifications and Reduce Number of Benign Biopsy Results: Initial Experience. Radiology, 2006, 240, 666-673.	3.6	91
36	Dynamics of tumor imaging with Gd-DTPA—polyethylene glycol polymers: Dependence on molecular weight. Journal of Magnetic Resonance Imaging, 1994, 4, 467-472.	1.9	90

#	Article	IF	CITATIONS
37	Association of Omics Features with Histopathology Patterns in Lung Adenocarcinoma. Cell Systems, 2017, 5, 620-627.e3.	2.9	88
38	Multimodal fusion with deep neural networks for leveraging CT imaging and electronic health record: a case-study in pulmonary embolism detection. Scientific Reports, 2020, 10, 22147.	1.6	83
39	Localization of Damage in Progressive Hydroxychloroquine Retinopathy On and Off the Drug: Inner Versus Outer Retina, Parafovea Versus Peripheral Fovea. , 2015, 56, 3415.		82
40	Automated Classification of Usual Interstitial Pneumonia Using Regional Volumetric Texture Analysis in High-Resolution Computed Tomography. Investigative Radiology, 2015, 50, 261-267.	3.5	78
41	Federated Learning for Breast Density Classification: A Real-World Implementation. Lecture Notes in Computer Science, 2020, , 181-191.	1.0	75
42	Volumetric Image Registration From Invariant Keypoints. IEEE Transactions on Image Processing, 2017, 26, 4900-4910.	6.0	74
43	Common Data Elements in Radiology. Radiology, 2017, 283, 837-844.	3.6	74
44	Automated Grading of Gliomas using Deep Learning in Digital Pathology Images: A modular approach with ensemble of convolutional neural networks. AMIA Annual Symposium proceedings, 2015, 2015, 1899-908.	0.2	73
45	PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging. Npj Digital Medicine, 2020, 3, 61.	5.7	72
46	Protégé: A Tool for Managing and Using Terminology in Radiology Applications. Journal of Digital Imaging, 2007, 20, 34-46.	1.6	71
47	Robust Intratumor Partitioning to Identify High-Risk Subregions in Lung Cancer: A Pilot Study. International Journal of Radiation Oncology Biology Physics, 2016, 95, 1504-1512.	0.4	71
48	Regulatory Frameworks for Development and Evaluation of Artificial Intelligence–Based Diagnostic Imaging Algorithms: Summary and Recommendations. Journal of the American College of Radiology, 2021, 18, 413-424.	0.9	69
49	Breast Cancer Risk and Mammographic Density Assessed with Semiautomated and Fully Automated Methods and BI-RADS. Radiology, 2017, 282, 348-355.	3.6	65
50	Differential Data Augmentation Techniques for Medical Imaging Classification Tasks. AMIA Annual Symposium proceedings, 2017, 2017, 979-984.	0.2	64
51	Fully Automated Prediction of Geographic Atrophy Growth Using Quantitative Spectral-Domain Optical Coherence Tomography Biomarkers. Ophthalmology, 2016, 123, 1737-1750.	2.5	63
52	Automated geographic atrophy segmentation for SD-OCT images using region-based C-V model via local similarity factor. Biomedical Optics Express, 2016, 7, 581.	1.5	62
53	Transfer learning on fused multiparametric MR images for classifying histopathological subtypes of rhabdomyosarcoma. Computerized Medical Imaging and Graphics, 2018, 65, 167-175.	3.5	62
54	Radiology report annotation using intelligent word embeddings: Applied to multi-institutional chest CT cohort. Journal of Biomedical Informatics, 2018, 77, 11-20.	2.5	61

#	Article	IF	CITATIONS
55	Artificial Intelligence in Imaging: The Radiologist's Role. Journal of the American College of Radiology, 2019, 16, 1309-1317.	0.9	60
56	Adaptive local window for level set segmentation of CT and MRI liver lesions. Medical Image Analysis, 2017, 37, 46-55.	7.0	59
57	The Annotation and Image Mark-up Project. Radiology, 2009, 253, 590-592.	3.6	56
58	Beyond Retinal Layers: A Deep Voting Model for Automated Geographic Atrophy Segmentation in SD-OCT Images. Translational Vision Science and Technology, 2018, 7, 1.	1.1	54
59	Semi-automatic geographic atrophy segmentation for SD-OCT images. Biomedical Optics Express, 2013, 4, 2729.	1.5	51
60	Development and Performance of the Pulmonary Embolism Result Forecast Model (PERFORM) for Computed Tomography Clinical Decision Support. JAMA Network Open, 2019, 2, e198719.	2.8	50
61	Automatic classification of mammography reports by BI-RADS breast tissue composition class. Journal of the American Medical Informatics Association: JAMIA, 2012, 19, 913-916.	2.2	49
62	Automated Tracking of Quantitative Assessments of Tumor Burden in Clinical Trials. Translational Oncology, 2014, 7, 23-35.	1.7	48
63	CT-ORG, a new dataset for multiple organ segmentation in computed tomography. Scientific Data, 2020, 7, 381.	2.4	48
64	A Data Warehouse for Integrating Radiologic and Pathologic Data. Journal of the American College of Radiology, 2008, 5, 210-217.	0.9	47
65	Adaptive Estimation of Active Contour Parameters Using Convolutional Neural Networks and Texture Analysis. IEEE Transactions on Medical Imaging, 2017, 36, 781-791.	5.4	46
66	Automated retinal layers segmentation in SD-OCT images using dual-gradient and spatial correlation smoothness constraint. Computers in Biology and Medicine, 2014, 54, 116-128.	3.9	45
67	Artificial intelligence enables whole-body positron emission tomography scans with minimal radiation exposure. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2771-2781.	3.3	45
68	Using automatically extracted information from mammography reports for decision-support. Journal of Biomedical Informatics, 2016, 62, 224-231.	2.5	44
69	Magnetic resonance imaging and molecular features associated with tumor-infiltrating lymphocytes in breast cancer. Breast Cancer Research, 2018, 20, 101.	2.2	44
70	Natural Language Processing Approaches to Detect the Timeline of Metastatic Recurrence of Breast Cancer. JCO Clinical Cancer Informatics, 2019, 3, 1-12.	1.0	43
71	A Statistical Approach to Scanning the Biomedical Literature for Pharmacogenetics Knowledge. Journal of the American Medical Informatics Association: JAMIA, 2004, 12, 121-129.	2.2	40
72	Predicting Visual Semantic Descriptive Terms From Radiological Image Data: Preliminary Results With Liver Lesions in CT. IEEE Transactions on Medical Imaging, 2014, 33, 1669-1676.	5.4	40

#	Article	IF	CITATIONS
73	On combining image-based and ontological semantic dissimilarities for medical image retrieval applications. Medical Image Analysis, 2014, 18, 1082-1100.	7.0	40
74	A combinatorial radiographic phenotype may stratify patient survival and be associated with invasion and proliferation characteristics in glioblastoma. Journal of Neurosurgery, 2016, 124, 1008-1017.	0.9	40
75	Quantitative Image Feature Engine (QIFE): an Open-Source, Modular Engine for 3D Quantitative Feature Extraction from Volumetric Medical Images. Journal of Digital Imaging, 2018, 31, 403-414.	1.6	39
76	Informatics in Radiology: Measuring and Improving Quality in Radiology: Meeting the Challenge with Informatics. Radiographics, 2011, 31, 1511-1527.	1.4	38
77	Predicting adenocarcinoma recurrence using computational texture models of nodule components in lung CT. Medical Physics, 2015, 42, 2054-2063.	1.6	38
78	Prediction of age-related macular degeneration disease using a sequential deep learning approach on longitudinal SD-OCT imaging biomarkers. Scientific Reports, 2020, 10, 15434.	1.6	37
79	Current Clinical Applications of Artificial Intelligence in Radiology and Their Best Supporting Evidence. Journal of the American College of Radiology, 2020, 17, 1371-1381.	0.9	37
80	Accounting for data variability in multi-institutional distributed deep learning for medical imaging. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 700-708.	2.2	36
81	Weakly supervised natural language processing for assessing patient-centered outcome following prostate cancer treatment. JAMIA Open, 2019, 2, 150-159.	1.0	35
82	The use of texture-based radiomics CT analysis to predict outcomes in early-stage non-small cell lung cancer treated with stereotactic ablative radiotherapy. British Journal of Radiology, 2019, 92, 20180228.	1.0	35
83	MS-CAM: Multi-Scale Class Activation Maps for Weakly-Supervised Segmentation of Geographic Atrophy Lesions in SD-OCT Images. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3443-3455.	3.9	34
84	Optimizing risk-based breast cancer screening policies with reinforcement learning. Nature Medicine, 2022, 28, 136-143.	15.2	34
85	A hierarchical knowledge-based approach for retrieving similar medical images described with semantic annotations. Journal of Biomedical Informatics, 2014, 49, 227-244.	2.5	33
86	Automatic information extraction from unstructured mammography reports using distributed semantics. Journal of Biomedical Informatics, 2018, 78, 78-86.	2.5	33
87	Cross-Modal Data Programming Enables Rapid Medical Machine Learning. Patterns, 2020, 1, 100019.	3.1	33
88	Weak supervision as an efficient approach for automated seizure detection in electroencephalography. Npj Digital Medicine, 2020, 3, 59.	5.7	33
89	Deep learning predicts postsurgical recurrence of hepatocellular carcinoma from digital histopathologic images. Scientific Reports, 2021, 11, 2047.	1.6	33
90	Annotation and Image Markup: Accessing and Interoperating with the Semantic Content in Medical Imaging. IEEE Intelligent Systems, 2009, 24, 57-65.	4.0	32

#	Article	IF	CITATIONS
91	Magnetic resonance perfusion image features uncover an angiogenic subgroup of glioblastoma patients with poor survival and better response to antiangiogenic treatment. Neuro-Oncology, 2017, 19, now270.	0.6	32
92	Prediction of EGFR and KRAS mutation in non-small cell lung cancer using quantitative 18F FDG-PET/CT metrics. Oncotarget, 2017, 8, 52792-52801.	0.8	32
93	iPad: Semantic annotation and markup of radiological images. AMIA Annual Symposium proceedings, 2008, , 626-30.	0.2	32
94	Automated intraretinal segmentation of SD-OCT images in normal and age-related macular degeneration eyes. Biomedical Optics Express, 2017, 8, 1926.	1.5	31
95	Imaging, Genetic, and Demographic Factors Associated With Conversion to Neovascular Age-Related Macular Degeneration. JAMA Ophthalmology, 2019, 137, 738.	1.4	31
96	Handling missing MRI sequences in deep learning segmentation of brain metastases: a multicenter study. Npj Digital Medicine, 2021, 4, 33.	5.7	31
97	Data valuation for medical imaging using Shapley value and application to a large-scale chest X-ray dataset. Scientific Reports, 2021, 11, 8366.	1.6	31
98	Using ontologies linked with geometric models to reason about penetrating injuries. Artificial Intelligence in Medicine, 2006, 37, 167-176.	3.8	30
99	The Use of Quantitative Imaging in Radiation Oncology: A Quantitative Imaging Network (QIN) Perspective. International Journal of Radiation Oncology Biology Physics, 2018, 102, 1219-1235.	0.4	30
100	Automated Detection of Measurements and Their Descriptors in Radiology Reports Using a Hybrid Natural Language Processing Algorithm. Journal of Digital Imaging, 2019, 32, 544-553.	1.6	30
101	ePAD: An Image Annotation and Analysis Platform for Quantitative Imaging. Tomography, 2019, 5, 170-183.	0.8	30
102	Advancing COVID-19 diagnosis with privacy-preserving collaboration in artificial intelligence. Nature Machine Intelligence, 2021, 3, 1081-1089.	8.3	30
103	Managing Biomedical Image Metadata for Search and Retrieval of Similar Images. Journal of Digital Imaging, 2011, 24, 739-748.	1.6	29
104	Relevance feedback for enhancing content based image retrieval and automatic prediction of semantic image features: Application to bone tumor radiographs. Journal of Biomedical Informatics, 2018, 84, 123-135.	2.5	29
105	Identification of 31 loci for mammographic density phenotypes and their associations with breast cancer risk. Nature Communications, 2020, 11, 5116.	5.8	29
106	Automatic abstraction of imaging observations with their characteristics from mammography reports. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, e81-e92.	2.2	28
107	A Comprehensive Descriptor of Shape: Method and Application to Content-Based Retrieval of Similar Appearing Lesions in Medical Images. Journal of Digital Imaging, 2012, 25, 121-128.	1.6	27
108	Computational Identification of Tumor Anatomic Location Associated with Survival in 2 Large Cohorts of Human Primary Glioblastomas. American Journal of Neuroradiology, 2016, 37, 621-628.	1.2	27

#	Article	IF	CITATIONS
109	Annotation and query of tissue microarray data using the NCI Thesaurus. BMC Bioinformatics, 2007, 8, 296.	1.2	26
110	Imaging Informatics. Academic Radiology, 2013, 20, 1195-1212.	1.3	26
111	The National Cancer Informatics Program (NCIP) Annotation and Image Markup (AIM) Foundation Model. Journal of Digital Imaging, 2014, 27, 692-701.	1.6	26
112	A method for normalizing pathology images to improve feature extraction for quantitative pathology. Medical Physics, 2016, 43, 528-537.	1.6	26
113	Analysis of Inner and Outer Retinal Thickness in Patients Using Hydroxychloroquine Prior to Development of Retinopathy. JAMA Ophthalmology, 2016, 134, 511.	1.4	26
114	Use of Radiology Procedure Codes in Health Care: The Need for Standardization and Structure. Radiographics, 2017, 37, 1099-1110.	1.4	26
115	Automated geographic atrophy segmentation for SD-OCT images based on two-stage learning model. Computers in Biology and Medicine, 2019, 105, 102-111.	3.9	26
116	Multiplexed imaging analysis of the tumor-immune microenvironment reveals predictors of outcome in triple-negative breast cancer. Communications Biology, 2021, 4, 852.	2.0	25
117	An Ontology for PACS Integration. Journal of Digital Imaging, 2006, 19, 316-327.	1.6	24
118	A Robust Classifier to Distinguish Noise from fMRI Independent Components. PLoS ONE, 2014, 9, e95493.	1.1	24
119	SplitAVC: A Heterogeneity-Aware Federated Deep Learning Method for Medical Imaging. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 4635-4644.	3.9	24
120	The IR Radlex Project: An Interventional Radiology Lexicon—A Collaborative Project of the Radiological Society of North America and the Society of Interventional Radiology. Journal of Vascular and Interventional Radiology, 2009, 20, 433-435.	0.2	23
121	Semiautomatic segmentation and follow-up of multicomponent low-grade tumors in longitudinal brain MRI studies. Medical Physics, 2014, 41, 052303.	1.6	23
122	Visual Prognosis of Eyes Recovering From Macular Hole Surgery Through Automated Quantitative Analysis of Spectral-Domain Optical Coherence Tomography (SD-OCT) Scans. , 2015, 56, 4631.		23
123	Natural Language Processing to Identify Cancer Treatments With Electronic Medical Records. JCO Clinical Cancer Informatics, 2021, 5, 379-393.	1.0	21
124	A Rapid Segmentation-Insensitive "Digital Biopsy―Method for Radiomic Feature Extraction: Method and Pilot Study Using CT Images of Non–Small Cell Lung Cancer. Tomography, 2016, 2, 283-294.	0.8	20
125	Toward rapid learning in cancer treatment selection: An analytical engine for practice-based clinical data. Journal of Biomedical Informatics, 2016, 60, 104-113.	2.5	20
126	Individual Drusen Segmentation and Repeatability and Reproducibility of Their Automated Quantification in Optical Coherence Tomography Images. Translational Vision Science and Technology, 2017, 6, 12.	1.1	20

#	Article	IF	CITATIONS
127	Expanding a radiology lexicon using contextual patterns in radiology reports. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 679-685.	2.2	20
128	Integrating Al Algorithms into the Clinical Workflow. Radiology: Artificial Intelligence, 2021, 3, e210013.	3.0	20
129	Imaging and artificial intelligence for progression of age-related macular degeneration. Experimental Biology and Medicine, 2021, 246, 2159-2169.	1.1	20
130	Challenges and opportunities for artificial intelligence in oncological imaging. Clinical Radiology, 2021, 76, 728-736.	0.5	20
131	AUTOMATING DATA ACQUISITION INTO ONTOLOGIES FROM PHARMACOGENETICS RELATIONAL DATA SOURCES USING DECLARATIVE OBJECT DEFINITIONS AND XML. , 2001, , .		20
132	FMA-RadLex: An application ontology of radiological anatomy derived from the foundational model of anatomy reference ontology. AMIA Annual Symposium proceedings, 2008, , 465-9.	0.2	20
133	Federated Learning for Multicenter Collaboration in Ophthalmology. Ophthalmology Retina, 2022, 6, 657-663.	1.2	20
134	Ontology-Assisted Analysis of Web Queries to Determine the Knowledge Radiologists Seek. Journal of Digital Imaging, 2011, 24, 160-164.	1.6	19
135	Patient-specific COVID-19 resource utilization prediction using fusion AI model. Npj Digital Medicine, 2021, 4, 94.	5.7	19
136	Quantitative imaging feature pipeline: a web-based tool for utilizing, sharing, and building image-processing pipelines. Journal of Medical Imaging, 2020, 7, 1.	0.8	19
137	Liquid oral magnetic particles as a gastrointestinal contrast agent for MR imaging: Efficacy in vivo. Journal of Magnetic Resonance Imaging, 1993, 3, 113-118.	1.9	18
138	Case-control study of mammographic density and breast cancer risk using processed digital mammograms. Breast Cancer Research, 2016, 18, 53.	2.2	18
139	Probabilistic Prognostic Estimates of Survival in Metastatic Cancer Patients (PPES-Met) Utilizing Free-Text Clinical Narratives. Scientific Reports, 2018, 8, 10037.	1.6	18
140	Informatics in Radiology: Improving Clinical Work Flow through an AIM Database: A Sample Web-based Lesion Tracking Application. Radiographics, 2012, 32, 1543-1552.	1.4	17
141	Informatics methods to enable sharing of quantitative imaging research data. Magnetic Resonance Imaging, 2012, 30, 1249-1256.	1.0	17
142	Beyond the Artificial Intelligence Hype. Journal of Thoracic Imaging, 2020, 35, S3-S10.	0.8	17
143	Overview of Noninterpretive Artificial Intelligence Models for Safety, Quality, Workflow, and Education Applications in Radiology Practice. Radiology: Artificial Intelligence, 2022, 4, e210114.	3.0	17
144	Computational neuroanatomy: ontology-based representation of neural components and connectivity. BMC Bioinformatics, 2009, 10, S3.	1.2	16

#	Article	IF	CITATIONS
145	Optimized steerable wavelets for texture analysis of lung tissue in 3-D CT: Classification of usual interstitial pneumonia. , 2015, , .		16
146	Piecewise convexity of artificial neural networks. Neural Networks, 2017, 94, 34-45.	3.3	15
147	Automated dendritic spine detection using convolutional neural networks on maximum intensity projected microscopic volumes. Journal of Neuroscience Methods, 2018, 309, 25-34.	1.3	15
148	Geographic atrophy segmentation in SD-OCT images using synthesized fundus autofluorescence imaging. Computer Methods and Programs in Biomedicine, 2019, 182, 105101.	2.6	15
149	Lower Extremity Venous Stent Placement: A Large Retrospective Single-Center Analysis. Journal of Vascular and Interventional Radiology, 2020, 31, 251-259.e2.	0.2	15
150	Computational Challenges and Collaborative Projects in the NCI Quantitative Imaging Network. Tomography, 2016, 2, 242-249.	0.8	15
151	Federated Learning for Multicenter Collaboration in Ophthalmology. Ophthalmology Retina, 2022, 6, 650-656.	1.2	15
152	Representing genetic sequence data for pharmacogenomics: an evolutionary approach using ontological and relational models. Bioinformatics, 2002, 18, S207-S215.	1.8	14
153	Informatics Methods to Enable Patient-centered Radiology. Academic Radiology, 2009, 16, 524-534.	1.3	14
154	Evaluation of Negation and Uncertainty Detection and its Impact on Precision and Recall in Search. Journal of Digital Imaging, 2011, 24, 234-242.	1.6	14
155	Informatics in Radiology: An Open-Source and Open-Access Cancer Biomedical Informatics Grid Annotation and Image Markup Template Builder. Radiographics, 2012, 32, 1223-1232.	1.4	14
156	Application of Improved Homogeneity Similarity-Based Denoising in Optical Coherence Tomography Retinal Images. Journal of Digital Imaging, 2015, 28, 346-361.	1.6	14
157	Reproductive Factors and Mammographic Density: Associations Among 24,840 Women and Comparison of Studies Using Digitized Film-Screen Mammography and Full-Field Digital Mammography. American Journal of Epidemiology, 2019, 188, 1144-1154.	1.6	14
158	Automatic inference of BI-RADS final assessment categories from narrative mammography report findings. Journal of Biomedical Informatics, 2019, 92, 103137.	2.5	14
159	Association of Tumor [18F]FDG Activity and Diffusion Restriction with Clinical Outcomes of Rhabdomyosarcomas. Molecular Imaging and Biology, 2019, 21, 591-598.	1.3	14
160	Natural Language Generation Model for Mammography Reports Simulation. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 2711-2717.	3.9	14
161	Changes in Cancer Management due to COVID-19 Illness in Patients with Cancer in Northern California. JCO Oncology Practice, 2021, 17, e377-e385.	1.4	14
162	Development and Use of Natural Language Processing for Identification of Distant Cancer Recurrence and Sites of Distant Recurrence Using Unstructured Electronic Health Record Data. JCO Clinical Cancer Informatics, 2021, 5, 469-478.	1.0	14

#	Article	IF	CITATIONS
163	Uncovering interpretable potential confounders in electronic medical records. Nature Communications, 2022, 13, 1014.	5.8	14
164	A Scalable Natural Language Processing for Inferring BT-RADS Categorization from Unstructured Brain Magnetic Resonance Reports. Journal of Digital Imaging, 2020, 33, 1393-1400.	1.6	13
165	Restricted Summed-Area Projection for Geographic Atrophy Visualization in SD-OCT Images. Translational Vision Science and Technology, 2015, 4, 2.	1.1	12
166	Content-based image retrieval in radiology: analysis of variability in human perception of similarity. Journal of Medical Imaging, 2015, 2, 025501.	0.8	12
167	Age at Menarche and Late Adolescent Adiposity Associated with Mammographic Density on Processed Digital Mammograms in 24,840 Women. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1450-1458.	1.1	12
168	An integrated time adaptive geographic atrophy prediction model for SD-OCT images. Medical Image Analysis, 2021, 68, 101893.	7.0	12
169	SCUâ€Net: A deep learning method for segmentation and quantification of breast arterial calcifications on mammograms. Medical Physics, 2021, 48, 5851-5861.	1.6	12
170	Alcohol and Tobacco Use in Relation to Mammographic Density in 23,456 Women. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1039-1048.	1.1	11
171	Weakly supervised temporal model for prediction of breast cancer distant recurrence. Scientific Reports, 2021, 11, 9461.	1.6	11
172	Using a Bayesian network to predict the probability and type of breast cancer represented by microcalcifications on mammography. Studies in Health Technology and Informatics, 2004, 107, 13-7.	0.2	11
173	Automatic Classification of Cancer Pathology Reports: A Systematic Review. Journal of Pathology Informatics, 2022, 13, 100003.	0.8	11
174	Biomedical Imaging Informatics. , 2014, , 285-327.		10
175	Developing a Comprehensive Database Management System for Organization and Evaluation of Mammography Datasets. Cancer Informatics, 2014, 13s3, CIN.S14031.	0.9	10
176	Dynamic strategy for personalized medicine: An application to metastatic breast cancer. Journal of Biomedical Informatics, 2017, 68, 50-57.	2.5	10
177	Point Shear Wave Elastography Using Machine Learning to Differentiate Renal Cell Carcinoma and Angiomyolipoma. Ultrasound in Medicine and Biology, 2019, 45, 1944-1954.	0.7	10
178	A New Multimodel Machine Learning Framework to Improve Hepatic Fibrosis Grading Using Ultrasound Elastography Systems from Different Vendors. Ultrasound in Medicine and Biology, 2020, 46, 26-33.	0.7	10
179	Comparison of segmentation-free and segmentation-dependent computer-aided diagnosis of breast masses on a public mammography dataset. Journal of Biomedical Informatics, 2021, 113, 103656.	2.5	10
180	Assessing treatment response in triple-negative breast cancer from quantitative image analysis in perfusion magnetic resonance imaging. Journal of Medical Imaging, 2017, 5, 1.	0.8	10

#	Article	lF	CITATIONS
181	Data Sharing of Imaging in an Evolving Health Care World: Report of the ACR Data Sharing Workgroup, Part 1: Data Ethics of Privacy, Consent, and Anonymization. Journal of the American College of Radiology, 2021, 18, 1646-1654.	0.9	10
182	Mining Electronic Health Records to Extract Patient-Centered Outcomes Following Prostate Cancer Treatment. AMIA Annual Symposium proceedings, 2017, 2017, 876-882.	0.2	10
183	On the Feasibility of Predicting Radiological Observations from Computational Imaging Features of Liver Lesions in CT Scans. , 2011, , .		9
184	Finding the Meaning in Images: Annotation and Image Markup. Philosophy, Psychiatry and Psychology, 2011, 18, 311-318.	0.2	9
185	Automated detection of foveal center in <scp>SD</scp> â€ <scp>OCT</scp> images using the saliency of retinal thickness maps. Medical Physics, 2017, 44, 6390-6403.	1.6	9
186	Revealing cancer subtypes with higher-order correlations applied to imaging and omics data. BMC Medical Genomics, 2017, 10, 20.	0.7	9
187	Proposing New RadLex Terms by Analyzing Free-Text Mammography Reports. Journal of Digital Imaging, 2018, 31, 596-603.	1.6	9
188	Spatial Characterization of Tumor Perfusion Properties from 3D DCE-US Perfusion Maps are Early Predictors of Cancer Treatment Response. Scientific Reports, 2020, 10, 6996.	1.6	9
189	An ?Omics? view of drug development. Drug Development Research, 2004, 62, 81-85.	1.4	8
190	Quantitative Framework for Risk Stratification of Thyroid Nodules With Ultrasound: A Step Toward Automated Triage of Thyroid Cancer. American Journal of Roentgenology, 2020, 214, 885-892.	1.0	8
191	Al-based structure-function correlation in age-related macular degeneration. Eye, 2021, 35, 2110-2118.	1.1	8
192	Doubly Weak Supervision of Deep Learning Models for Head CT. Lecture Notes in Computer Science, 2019, , 811-819.	1.0	8
193	A weakly supervised model for the automated detection of adverse events using clinical notes. Journal of Biomedical Informatics, 2022, 126, 103969.	2.5	8
194	Handling data heterogeneity with generative replay in collaborative learning for medical imaging. Medical Image Analysis, 2022, 78, 102424.	7.0	8
195	Modeling Perceptual Similarity Measures in CT Images of Focal Liver Lesions. Journal of Digital Imaging, 2013, 26, 714-720.	1.6	7
196	Comparing image search behaviour in the ARRS GoldMiner search engine and a clinical PACS/RIS. Journal of Biomedical Informatics, 2015, 56, 57-64.	2.5	7
197	Building and Querying RDF/OWL Database of Semantically Annotated Nuclear Medicine Images. Journal of Digital Imaging, 2017, 30, 4-10.	1.6	7
198	A Fully-Integrated Analog Machine Learning Classifier for Breast Cancer Classification. Electronics (Switzerland), 2020, 9, 515.	1.8	7

#	Article	IF	CITATIONS
199	Observational Supervision for Medical Image Classification Using Gaze Data. Lecture Notes in Computer Science, 2021, , 603-614.	1.0	7
200	Automated Identification and Measurement Extraction of Pancreatic Cystic Lesions from Free-Text Radiology Reports Using Natural Language Processing. Radiology: Artificial Intelligence, 2022, 4, e210092.	3.0	7
201	Automating Scoliosis Measurements in Radiographic Studies with Machine Learning: Comparing Artificial Intelligence and Clinical Reports. Journal of Digital Imaging, 2022, 35, 524-533.	1.6	7
202	Automated detection of ambiguity in BI-RADS assessment categories in mammography reports. Studies in Health Technology and Informatics, 2014, 197, 35-9.	0.2	7
203	3D Markup of Radiological Images in ePAD, a Web-Based Image Annotation Tool. , 2015, , .		6
204	Is it possible to automatically assess pretreatment digital rectal examination documentation using natural language processing? A single-centre retrospective study. BMJ Open, 2019, 9, e027182.	0.8	6
205	Impact of Upstream Medical Image Processing on Downstream Performance of a Head CT Triage Neural Network. Radiology: Artificial Intelligence, 2021, 3, e200229.	3.0	6
206	Linking Ontologies with Three-Dimensional Models of Anatomy to Predict the Effects of Penetrating Injuries. , 2004, 2004, 3128-31.		5
207	A Scalable Reference Standard of Visual Similarity for a Content-Based Image Retrieval System. , 2011, , .		5
208	Quantitative Evaluation of Drusen on Photographs. Ophthalmology, 2013, 120, 644-644.e2.	2.5	5
209	A multiâ€model framework to estimate perfusion parameters using contrastâ€enhanced ultrasound imaging. Medical Physics, 2019, 46, 590-600.	1.6	5
210	Advancing Semantic Interoperability of Image Annotations: Automated Conversion of Non-standard Image Annotations in a Commercial PACS to the Annotation and Image Markup. Journal of Digital Imaging, 2020, 33, 49-53.	1.6	5
211	Randomized phase II study of cisplatin and etoposide versus temozolomide and capecitabine in patients (pts) with advanced G3 non-small cell gastroenteropancreatic neuroendocrine carcinomas (GEPNEC): A trial of the ECOG-ACRIN Cancer Research Group (EA2142) Journal of Clinical Oncology, 2016, 34, TPS4149-TPS4149.	0.8	5
212	Natural language processing of head CT reports to identify intracranial mass effect: CTIME algorithm. American Journal of Emergency Medicine, 2021, 51, 388-392.	0.7	5
213	Use of description logic classification to reason about consequences of penetrating injuries. AMIA Annual Symposium proceedings, 2005, , 649-53.	0.2	5
214	Ontology-based representation of simulation models of physiology. AMIA Annual Symposium proceedings, 2006, , 664-8.	0.2	5
215	Automatic annotation of radiological observations in liver CT images. AMIA Annual Symposium proceedings, 2012, 2012, 257-63.	0.2	5
216	Automating data acquisition into ontologies from pharmacogenetics relational data sources using declarative object definitions and XML. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2002, , 88-99.	0.7	4

ARTICLE IF CITATIONS Toward Reduction in False-Positive Thyroid Nodule Biopsies with a Deep Learning–based Risk Stratification System Using US Cine-Clip Images. Radiology: Artificial Intelligence, 2022, 4, . Using the Semantic Web and Web Apps to Connect Radiologists and Oncologists., 2012,,. 218 3 Web-Based Tools for Exploring the Potential of Quantitative Imaging Biomarkers in Radiology., 2017,, 219 379-410. Biomedical Imaging Informatics., 2021, , 299-362. 220 3 Type 1 Diabetes Management With Technology: Patterns of Utilization and Effects on Glucose Control Using Real-World Evidence. Clinical Diabetes, 2021, 39, 284-292. 221 1.2 Recurrent Neural Network Circuit for Automated Detection of Atrial Fibrillation from Raw ECG., 222 3 2021,,. Detection of prostate cancer and determination of its significance using explainable artificial 0.8 intelligence.. journal of Clinical Oncology, 2020, 38, 5555-5555. Data Sharing of Imaging in an Evolving Health Care World: Report of the ACR Data Sharing Workgroup, Part 2: Annotation, Curation, and Contracting. Journal of the American College of 224 0.9 3 Radiology, 2021, 18, 1655-1665. Automatic Localization and Brand Detection of Cervical Spine Hardware on Radiographs Using Weakly 3.0 Supervised Machine Learning. Radiology: Artificial Intelligence, 2022, 4, e210099 Margin-aware intraclass novelty identification for medical images. Journal of Medical Imaging, 2022, 9, 226 0.8 3 014004. Annotation for information extraction from mammography reports. Studies in Health Technology and 0.2 Informatics, 2013, 190, 183-5. Accuracy of Electronic Medical Record Follow-Up Data for Estimating the Survival Time of Patients 228 1.0 3 With Cancer. JCO Clinical Cancer Informatics, 2022, , . Computerized Prediction of Radiological Observations Based on Quantitative Feature Analysis: Initial 1.6 Experience in Liver Lesions. Journal of Digital Imaging, 2017, 30, 506-518. A Multi-Scale Deep Convolutional Neural Network For Joint Segmentation And Prediction Of 230 2 Geographic Atrophy In SD-OCT Images., 2019, , . Automatic Staging of Cancer Tumors Using AIM Image Annotations and Ontologies. Journal of Digital Imaging, 2020, 33, 287-303. Toward Data-Driven Learning Healthcare Systems in Interventional Radiology: Implementation to 232 1.6 2 Evaluate Venous Stent Patency. Journal of Digital Imaging, 2020, 33, 25-36. Locally adaptive magnetic resonance intensity models for unsupervised segmentation of multiple 0.8 sclerosis lesions. Journal of Medical Imaging, 2017, 5, 1. A phase II study of capecitabine, carboplatin, and bevacizumab for metastatic or unresectable 234 0.8 2 gastroesophageal junction and gastric adenocarcinoma. Journal of Clinical Oncology, 2014, 32, 115-115.

#	Article	IF	CITATIONS
235	Clinical Trial Design and Development Work Group Within the Quantitative Imaging Network. Tomography, 2020, 6, 60-64.	0.8	2
236	Toward Automated Pre-Biopsy Thyroid Cancer Risk Estimation in Ultrasound. AMIA Annual Symposium proceedings, 2017, 2017, 734-741.	0.2	2
237	An Automated Feature Engineering for Digital Rectal Examination Documentation using Natural Language Processing. AMIA Annual Symposium proceedings, 2018, 2018, 288-294.	0.2	2
238	A semantic framework for the retrieval of similar radiological images based on medical annotations. , 2014, , .		1
239	Semantic Retrieval of Radiological Images withÂRelevance Feedback. Lecture Notes in Computer Science, 2015, , 11-25.	1.0	1
240	Automatic Classification of Cancer Tumors Using Image Annotations and Ontologies. , 2015, , .		1
241	Combination of visual and symbolic knowledge: A survey in anatomy. Computers in Biology and Medicine, 2017, 80, 148-157.	3.9	1
242	Query bot for retrieving patients' clinical history: A COVID-19 use-case. Journal of Biomedical Informatics, 2021, 123, 103918.	2.5	1
243	Determination of biologic and prognostic feature scores from whole slide histology images using deep learning Journal of Clinical Oncology, 2020, 38, e17527-e17527.	0.8	1
244	An expandable informatics framework for enhancing central cancer registries with digital pathology specimens, computational imaging tools, and advanced mining capabilities. Journal of Pathology Informatics, 2022, 13, 100167.	0.8	1
245	Natural Language Processing for Cardiovascular Applications. Contemporary Medical Imaging, 2022, , 231-243.	0.3	1
246	NIMG-27. GLIOBLASTOMA TUMOR SEGMENTATION USING DEEP CONVOLUTIONAL NEURAL NETWORKS. Neuro-Oncology, 2017, 19, vi147-vi147.	0.6	0
247	Automated Quantitative Imaging Measurements of Disease Severity in Patients with Nonthrombotic lliac Vein Compression. Journal of Vascular and Interventional Radiology, 2020, 31, 270-275.	0.2	0
248	Privacy-preserving collaborative deep learning methods for multiinstitutional training without sharing patient data. , 2021, , 101-112.		0
249	Patterns in cancer management changes for patients with COVID-19 in northern California Journal of Clinical Oncology, 2021, 39, 1535-1535.	0.8	0
250	A natural language processing tool for automatic identification of new disease and disease progression: Parsing text in multi-institutional radiology reports to facilitate clinical trial eligibility screening Journal of Clinical Oncology, 2021, 39, 1555-1555.	0.8	0
251	Reply to R. Kebudi et al. JCO Oncology Practice, 2021, 17, 364-364.	1.4	0
252	Reply to Ritzwoller et al. JCO Clinical Cancer Informatics, 2021, 5, 1026-1027.	1.0	0

#	Article	IF	CITATIONS
253	Artificial Intelligence in Radiology: Opportunities and Challenges. Radiologic Clinics of North America, 2021, 59, xv-xvi.	0.9	0
254	Segmentation and Visualization of Drusen and Geographic Atrophy in SD-OCT Images. Biological and Medical Physics Series, 2019, , 281-344.	0.3	0
255	Radiomics features to identify distinct subtypes of triple-negative breast cancers Journal of Clinical Oncology, 2019, 37, 3069-3069.	0.8	0
256	A novel method to assess incompleteness of mammography reports. AMIA Annual Symposium proceedings, 2014, 2014, 1758-67.	0.2	0
257	Balancing the Scales: An Analysis of Social Determinants of Health, Radiology Report Acuity, and Radiology Staffing Models in an Academic Health System. Journal of the American College of Radiology, 2022, 19, 172-177.	0.9	Ο
258	Automated Identification of Immunocompromised Status in Critically III Children. Methods of Information in Medicine, 2022, 0, .	0.7	0